首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

3.
Infrequent, high‐magnitude events cause a disproportionate amount of sediment transport on steep hillslopes, but few quantitative data are available that capture these processes. Here we study the influence of wildfire and hillslope aspect on soil erosion in Fourmile Canyon, Colorado. This region experienced the Fourmile Fire of 2010, strong summer convective storms in 2011 and 2012, and extreme flooding in September 2013. We sampled soils shortly after these events and use fallout radionuclides to trace erosion on polar‐ and equatorial‐facing burned slopes and on a polar‐facing unburned slope. Because these radionuclides are concentrated in the upper decimeter of soil, soil inventories are sensitive to erosion by surface runoff. The polar‐facing burned slope had significantly lower cesium‐137 (137Cs) and lead‐210 (210Pb) inventories (p < 0.05) than either the polar‐facing unburned slope or equatorial‐facing burned slope. Local slope magnitude does not appear to control the erosional response to wildfire, as relatively gently sloping (~20%) polar‐facing positions were severely eroded in the most intensively burned area. Field evidence and soil profile analyses indicate up to 4 cm of local soil erosion on the polar‐facing burned slope, but radionuclide mass balance indicates that much of this was trapped nearby. Using a 137Cs‐based erosion model, we find that the burned polar‐facing slope had a net mean sediment loss of 2 mm (~1 kg m?2) over a one to three year period, which is one to two orders of magnitude higher than longer‐term erosion rates reported for this region. In this part of the Colorado Front Range, strong hillslope asymmetry controls soil moisture and vegetation; polar‐facing slopes support significantly denser pine and fir stands, which fuels more intense wildfires. We conclude that polar‐facing slopes experience the most severe surface erosion following wildfires in this region, indicating that landscape‐scale aridity can control the geomorphic response of hillslopes to wildfires. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

5.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

6.
A. Cerd 《水文研究》1998,12(4):661-671
Soil erosion and runoff rates are assumed to be highly dependent on slope position. However, little knowledge exists about the hydrogeomorphological processes at the pedon scale that support this idea. In order to assess the hydrological and erosional behaviour of soils at different slope positions, simulated rainfall experiments (55 mm was applied during one hour) were carried out on a south-facing slope with underlying limestone in south-east Spain. In the mean terms, the erosion rates (9 g m2 hr−1) and the runoff coefficients (12%) were very low at the scale of measurement (0·25 m2). The slope position does not affect erosion rates when the measurements are carried out under extreme dry conditions during summer. The low runoff rates found in summer under thunderstorms of high intensity (5 year return period) and the runon into surfaces with higher infiltration rates resulted in no detectable direct surface runoff (Hortonian) at the slope scale. This implies that erosion as a consequence of surface overland flow will only take place during events of high magnitude (55 mm hr−1) and low frequency (>5 years). Vegetation is the most important factor determining the soil erosion and runoff rates within the slope. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Wildfires are common in Australia and can cause vegetation loss and affect hydrological processes such as interception, evapotranspiration, soil water storage and streamflow. This study investigates wildfire impacts on catchment mean annual streamflow for 14 Australian catchments that have been severely impacted by the 2009 Victoria wildfire, the second-worst wildfire disaster in Australia. A statistical approach based on sensitivity coefficients was used for quantifying the climate variability impacts on streamflow and the time trend analysis method was used to estimate the annual streamflow changes due to wildfire respectively. Our results show that wildfire has caused a noticeable increase in mean annual streamflow in the catchments with a burnt area above 70% for an immediate post-wildfire period (2009–2015) and the wildfire impact on streamflow is evidently larger than the climate change impact in the majority of burnt catchments. Furthermore, the wildfire impact on mean annual streamflow strongly increases with the burnt percentage area, indicated by R2 = 0.73 between the two. The results also illustrate that catchments with high burnt percentage areas can have more potential to gain increased streamflow due to wildfires compared with that due to climate variability and can have significant streamflow change after wildfires above the 70% threshold of burnt area. These results provide evidence for evaluating large-scale wildfire impact on streamflow at small to medium-sized catchments, and guidance for process-based hydrological models for simulating wildfire impacts on hydrological processes for the immediate period after the wildfire.  相似文献   

8.
Water erosion on hillslopes is a worldwide environmental problem, which is a rainfall‐induced process, especially extreme rainfall. The great intensity of extreme rainfall strongly enhances the power of overland flow to detach soil and transport sediment. Plant litter is one of the most important constituents of ecosystems that often covers the soil surface and can be incorporated into topsoil. However, little attention has been paid to its effect on flow hydraulics owing to the veiled nature. This study aimed to examine the effects of incorporated litter on the hydraulic properties under extreme rainfall condition. To reach this goal, six litter rates of 0, 0.05, 0.10, 0.20, 0.35, and 0.50 kg m?2 and four litter types collected from deciduous trees, coniferous trees, shrubs, and herbs were incorporated into topsoil. Then, simulated rainfall experiments were performed on five slope gradients (5°, 10°, 15°, 20°, and 25°) with an extreme rainfall intensity of 80 mm h?1. The results showed that Froude number and flow velocity of the overland flow decreased, whereas flow resistance increased exponentially with litter incorporation rate. Litter type had an influence on flow hydraulics, which can mainly be attributed to the variations in surface coverage of the exposed litter and the litter morphology. Flow velocity and Darcy–Weisbach coefficient increased markedly with slope gradient. However, the variation of slope gradient did not modify the relationships between flow hydraulics and incorporated litter rate. The random roughness, resulting from heterogeneous erosion due to the uneven protection of surface exposed litter, increased linearly with litter incorporated rate. As rainfall proceeded, flow hydraulics varied with incorporated litter rate and slope gradient complicatedly due to the increases in flow rate and coverage of the exposed litter and the modification of soil surface roughness.  相似文献   

9.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

10.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   

12.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Monthly runoff and soil loss data of three fallow experimental plots are presented, comprising a summer and following winter season. The fallow plots were only tilled once, at the end of April. Summer runoff appeared to be controlled by rainfall intensity and conforms to the Horton model of overland flow generation. Winter runoff was primarily controlled by rainfall amount and conforms to the saturation or storage control model of runoff generation. Summer runoff volume was one fourth of winter runoff volume. Summer soil loss was twice as high as winter soil loss and was caused by high intensity, high energy rainfall. Winter soil loss was due to detachment limited erosion, caused by low intensity, low energy rainfall. Mean sediment concentration of winter runoff was one seventh of that of summer runoff. Implications for runoff and erosion of climatic change, involving increased rainfall amounts or intensities in summer or winter, are given.  相似文献   

14.
This paper describes the changes in soil water repellency and soil hydrological and erosional responses to rainfall at small‐plot scale, arising from a prescribed fire immediately following burning and one year later in a Mediterranean heathland in the area of the Strait of Gibraltar (southern Spain). Very little research has been carried out about the modifications on the ground surface after fire immediately after burning. A prescribed fire was conducted to study short‐term changes of the ground surface immediately and one year following burning. After a prescribed fire, a homogeneous charred litter layer and ash‐bed covered the mineral soil surface. This cover stayed stable on the soil surface during a period of seven days, until strong winds redistributed litter and ashes. The hydrophobicity of the exposed surface (litter and ashes) decreased considerably in relation with the litter layer properties before the fire. Ponding, runoff coefficients and soil loss were determined using simulated rainfall over the litter layer, the ash‐bed and the bare soil. Significant differences were not detected between pre‐ and post‐fire soil loss rates while a charred litter and thick ash layer were present on the ground surface. Runoff and erosion rates increased and time to ponding and runoff decreased when the charred litter and ash layers were artificially removed and the bare soil was exposed. Although wildfires will increase soil erodibility, the trends observed in this study suggest that this increased susceptibility to erosion from rainsplash processes may be limited to some degree while an intact ash and charred litter layer is still present. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The cataclysmic 1980 eruption of Mount St Helens radically reduced the infiltration characteristics of ∼60 000 ha of rugged terrain and dramatically altered landscape hydrology. Two decades of erosional, biogenic, cryogenic, and anthropogenic activity have modified the infiltration characteristics of much of that devastated landscape and modulated the hydrological impact of the eruption. We assessed infiltration and runoff characteristics of a segment of hillslope thickly mantled with tephra, but now revegetated primarily with grasses and other plants, to evaluate hydrological modifications due to erosion and natural turbation. Eruptive disturbance reduced infiltration capacity of the hillslope by as much as 50‐fold. Between 1980 and 2000, apparent infiltration capacities of plots on the hillslope increased as much as ten fold, but remain approximately three to five times less than the probable pre‐eruption capacities. Common regional rainfall intensities and snowmelt rates presently produce little surface runoff; however, high‐magnitude, low‐frequency storms and unusually rapid snowmelt can still induce broad infiltration‐excess overland flow. After 20 years, erosion and natural mechanical turbation have modulated, but not effaced, the hydrological perturbation caused by the cataclysmic eruption. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

18.
The Amazon basin covers an area of roughly 7 × 106 km2 and encompasses diverse soil – landscape types with potentially differing hydrological behaviour. This study was conducted in the Ultisol landscape of the western Amazon basin in Peru. Processes of stormflow generation were investigated on an event basis in a first‐order rainforest catchment to establish a causal link between soil physical and precipitation characteristics, hillslope flowpaths and stormflow hydrograph attributes. A sharp decrease in soil hydraulic conductivity with depth and high rainfall intensity and frequency favour rapid near‐surface flowpaths, mainly in the form of saturation‐excess overland flow and return flow. The latter results in an almost random occurrence of overland flow, with no obvious topographic control. Hillslope flowpaths do not vary much with respect to the hydrograph attributes time of rise, response time, lag time and centroid lag time. They have the same response time as streamflow, but a somewhat lower time of rise and significantly shorter lag times. The recession constant for hillslope hydrographs is about 10 min, in contrast to the streamflow recession constants of 28, 75 and 149 min. Stormflow generation in this Ultisol rainforest catchment differs strongly from that reported for Oxisol rainforest catchments. These two soilscapes may define a spectrum of possible catchment hydrological behaviour in the Amazon basin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Rock fragment cover has long been an important agricultural crop production technique on the Loess Plateau, China. Although this approach plays an important role in controlling hydrological processes and preventing soil erosion, inconsistent results have been recovered in this field. In this study, we investigated the effects of rock fragment cover on infiltration, run‐off, soil erosion, and hydraulic parameters using rainfall simulation in the field in a semi‐arid region of China. Two field plots encompassing 6 rock fragment coverages (0%, 10%, 20%, 25%, 30%, and 40%), as well as 2 rock fragment positions and sizes were exposed to rainfall at a particular intensity (60 mm h?1). The results of this study showed that increasing the rock fragment coverage with rock fragments resting on the soil surface increased infiltration but decreased run‐off generation and sediment yield. A contrasting result was found, however, when rock fragments were partially embedded into the soil surface; in this case, a positive relationship between rock fragment coverage and run‐off rate as well as a nonmonotonic relationship with respect to soil loss rate was recovered. The size of rock fragments also exerted a positive effect on run‐off generation and sediment yield but had a negative effect on infiltration. At the same time, both mean flow velocity and Froude number decreased with increasing rock fragment coverage regardless of rock fragment position and size, whereas both Manning roughness and Darcy–Weisbach friction factor were positively correlated. Results show that stream power is the most sensitive hydraulic parameter affecting soil loss. Combined with variance analysis, we concluded that the order of significance of rock fragment cover variables was position followed by coverage and then size. We also quantitatively incorporated the effects of rock fragment cover on soil loss via the C and K factors in the Revised Universal Soil Loss Equation. Overall, this study will enable the development of more accurate modelling approaches and lead to a better understanding of hydrological processes under rock fragment cover conditions.  相似文献   

20.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号