首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In alluvial river systems, lateral inputs of water and/or sediment at junctions or undercut hillsides can disrupt what would otherwise be smooth downstream trends in mainstream bed elevation, channel gradient, and bed grain size. Generic styles of mainstream response to lateral inputs are investigated using a one‐dimensional sediment routing model with multiple grain size fractions. Numerical experiments isolate the effects of three para‐meters: ratio of tributary to mainstream water flux (QR), ratio of tributary to mainstream bedload flux (FR), and ratio of tributary to mainstream bedload diameter (DR). The findings are not unduly sensitive to the choice of initial conditions or to approximations made in the model. The primary distinction is between junctions that aggrade, causing local profile convexity with interrupted downstream fining, and junctions that degrade. The immediate effects of aggradation extend further upstream than downstream, whereas degradation is much more subdued and has no upstream impact. Aggradation is typical of coarse inputs (DR > 2), and degradation of fine inputs (DR < 1), but very high ratios of QR to FR also promote degradation. Both aggrading and degrading junctions can lead to a change in mainstream bed grain size well below the junction, with higher ratios of QR to FR producing a coarser distal bed. The effect of a tributary reflects the interplay between additional bed load and additional discharge to transport it. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Confluences are important locations for river mixing within drainage networks, yet few studies have examined in detail the dynamics of mixing within confluences. This study examines the influence of momentum flux ratio, the scale of the flow (cross‐sectional area) and the density differences between incoming flows on thermal mixing at a small stream confluence. Results reveal that rates and patterns of thermal mixing depend on event‐specific combinations of the three factors. The mixing interface at this confluence is generally distorted towards the mouth of the lateral tributary by strong helical motion associated with curvature of flow from the lateral tributary as it aligns with the downstream channel. As the momentum flux from the lateral tributary increases, mixing is enhanced because helical motion from the curving tributary flow expands over the width of the downstream channel. The cross‐sectional area of the flow is negatively correlated with mixing rates, suggesting that the amount of mixing over a fixed distance downstream of the confluence is inversely related to the scale of the flow. Density differences are not strongly related to rates of mixing. Results confirm that mixing rates within the region of confluent flow interaction can be highly variable among flow events with different incoming flow conditions, but that, in general, length scales of mixing are short, and rates of mixing are high at this small confluence compared with those typically documented at large‐river confluences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The flow division at an open channel junction is affected by the inflow discharge and the downstream water depths of the junction. The growth of vegetation in a channel system is environmental friendly, but its effect on the flow in an open channel junction can be significant. In this work a 3D RANS (Reynolds Averaged Navier–Stokes equation) model has been implemented to investigate the flow phenomena in channel junctions with or without vegetation. The model is first validated by two cases: flow in an open channel T-junction without vegetation, and flow in a single open channel with vegetation. The model is then applied to simulate flow in an open channel T-junction with varying width ratio and vegetation density of the branch channel. The results quantitatively predict the trend of increasing flow in the branch channel with the increase in branch channel width and/or the decrease in vegetation density. The overall energy loss coefficient of the system, however, decreases with the amount of flow in the branch channel.  相似文献   

7.
Tidal creek networks have in 50 years extended over 30 km inland across the coastal plains of the Mary River in northern Australia, invading freshwater wetlands and destroying the associated vegetation. The networks have grown at an exponential rate through a combination of main channel extension and tributary development, with concomitant widening of the creeks. A large tidal range, very small elevational differences over the plains, and the availability of preexisting channel lines (notably in the form of palaeochannels) have been major factors contributing to the rapid rate of expansion. Close parallels exist between these networks and terrestrial networks as regards modes of growth and planimetric properties. A channel is initiated when the diffuse flow of a seepage zone becomes concentrated through localized scour. Subsequent development is characterized by the rapid extension of long first-order channels, with most tributary addition occurring later. Model tests suggest that branching was more likely on exterior links in the early stages but that exterior and interior link branching became more equally likely through time. Although the headward limits of the main creeks seem to have been reached, tributary infilling will continue to progress upstream. Only in the most downstream parts is a stable drainage density being approached. The networks not only satisfy the laws of drainage network composition and the basic postulates of the random model but also depart from topologic randomness in similar ways to terrestrial networks. Both topologic and length properties have changed during evolution but largely at the link rather than network scale. The close correspondence with terrestrial networks may be due to the low relief and the relatively unconstrained nature of growth in which availability of space was the main determining factor.  相似文献   

8.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The physical basis of the linkage between magnitude and timing of channel flow hydrographs and drainage network morphometry is reviewed. Small Hortonian and structurally Hortonian networks are analysed using numerical runoff simulation. For Hortonian networks the variability of the geometry of individual channels and subcatchments within each Strahler order has generally little effect upon the overall character of the hydrograph in channels of higher order. If the network is also structurally Hortonian, the analysis of the simultaneous formation, travel, and concentration of the hydrographs in all channels of the network can be simplified to a sequence of one representative hydrograph per channel order. This approach is used in this study. Three major runoff processes control the flow hydrograph characteristics: the overland flow process which determines the water supply to the drainage network; the channel flow process which translates the hydrograph in space and time; and the drainage network process which concentrates and magnifies the flow at the junctions of the drainage network. Functional relations for the hydrograph peak, timing, and flow velocity are presented. For a given uniform rainfall and infiltration rate, the peak of the channel flow hydrograph is shown to increase geometrically with channel order, and its magnitude is directly related to the bifurcation ratio. The travel time of the peak also increases geometrically with channel order, and it is directly related to the channel length ratio over velocity ratio. The flow velocity of the peak changes in a downstream direction as a function of the bifurcation and slope ratio. It was also found that for negligible channel storage the channel flow and drainage network processes do not contribute significantly to the observed nonlinear response of a watershed to precipitation.  相似文献   

11.
The downstream diminution in sediment size in a braided reach of the proglacial Sunwapta River, Alberta, Canada, was examined statistically to identify the sources of the observed variation about an expected exponential relationship between clast size and distance. Major deviations from this hypothetical relationship, such as a relative increase in grainsize, may be attributed to the effects of tributary sediment inputs and downstream changes in channel behaviour, whilst local variation is associated with complex patterns of sediment deposition observed at a bar scale. A comparison of diminution coefficients, calculated for separate lithologies and for subreaches along the river, with those obtained from previous studies, is used as an indicator of river behaviour and sediment transport processes. It is shown that rates of diminution vary within the reach in response to differing rates of aggradation and to the backwater effects created by tributary alluvial fans. The relatively high values for the calculated diminution coefficients indicate that processes of differential transport are the main cause of the grain size decrease.  相似文献   

12.
A field survey of thirty stream junctions from a small watershed, together with data collected by Miller (1958), allowed us to investigate morphometric adjustments occurring at confluences. The model proposed by Roy and Woldenberg (1986) was slightly modified and used as a tool for morphometric analysis. Two parameters are necessary in order to evaluate the rate of change in channel size at a confluence: the area ratio (channel capacity above the confluence: channel capacity below the confluence) and the discharge ratio (discharge of the minor tributary: discharge of the major tributary). Our data show that total channel capacity tends to decline below most confluences. A reduction in cross-sectional area implies an increase in average flow velocity. This interpretation is consistent with Lyell's observations and with results from recent flume experiments (Best and Reid, 1984).  相似文献   

13.
Mountain rivers can be subject to strong constraints imposed by changes in gradient and grain size supplied by processes such as glaciation and rockfall. Nonetheless, adjustments in the channel geometry and hydraulics of mountain rivers at the reach scale can produce discernible patterns analogous to those in fully alluvial rivers. Mountain rivers can differ in that imposed reach‐scale gradient is an especially important control on reach‐scale channel characteristics, as indicated by examination of North St Vrain Creek in Colorado. North St Vrain Creek drains 250 km2 of the Rocky Mountains. We used 25 study reaches within the basin to examine controls on reach‐scale channel geometry. Variables measured included channel geometry, large woody debris, grain size, and mean velocity. Drainage area at the study reaches ranged from 2·2 to 245 km2, and gradient from 0·013 to 0·147 m m?1. We examined correlations among (1) potential reach‐scale response variables describing channel bankfull dimension and shape, hydraulics, bedform wavelength and amplitude, grain size, ?ow resistance, standard deviation of hydraulic radius, and volume of large woody debris, and (2) potential control variables that change progressively downstream (drainage area, discharge) or that are likely to re?ect a reach‐speci?c control (bed gradient). We tested the hypothesis that response variables correlate most strongly with local bed gradient because of the segmented nature of mountain channels. Results from simple linear regression analyses indicate that most response variables correlate best with gradient, although channel width and width/depth ratio correlate best with discharge. Multiple regression analyses using Mallow's Cp selection criterion and log‐transformation of all variables produced similar results in that most response variables correlate strongly with gradient. These results suggest that the hypothesis is partially supported: channel bed gradient is likely to be a good predictor for many reach‐scale response variables along mountain rivers, but discharge is also an important predictor for some response variables. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Dividing rivers into homogeneous reaches is key for river processes and watershed management. In contrast to downstream fluvially dominated rivers, upstream debris-flow dominated torrents have steeper channel slopes and smaller valley width/depth ratios. Investigating transition reaches between torrents and fluvially dominated rivers, not only explores the structure of the landscape, but also contributes to hazard management. This study proposed a valley morphology index combining two variables, channel slope and valley width/depth ratio, to determine transition reaches between torrents and rivers. The methodology was applied to 41 mountain streams in Taiwan using a Geographic Information System (GIS)-based topographic analysis. Plots of valley width/depth ratio versus channel slope were used to determine boundary values of the valley morphology index (Iv) separating torrents from rivers. The plots showed that about 80% of the river basins present “L-shaped” curves, which indicate sharp decreases in slope for upstream sections and dramatic increases of valley width/depth ratio for downstream sections. Results further demonstrated an average value of Iv 0.0047 across the study sites. Spatial comparison between geographic regions indicated that transition reaches in eastern rivers tend to occur lower in the drainage basin due, in part, to higher terrain. Local factors, such as tributary confluences and landslides promote the transition from torrents to fluvially dominated rivers. Satellite images verified that the approach correctly identified transition reaches, suggesting that it may provide a useful reference for river management.  相似文献   

15.
Over the last century, geomorphic processes along the Middle Rio Grande have been altered by flood control and bank stabilization projects, intensified land and water use, and climate change. In response to potential risks to infrastructure and ecological integrity, recent (1985–2008) adjustment was investigated and historic (1918–1985) changes in Rio Grande channel planform through the Albuquerque, New Mexico, area were reviewed, especially in relation to changes in annual peak discharge and river engineering measures. Using a GIS, channel characteristics were digitized from georeferenced photographs and analyzed with particular attention to quantifying potential measurement error and its propagation. Error associated with average channel widths and channel area ranged between 4 and 13%. For smaller polygons, e.g. islands, error was higher (11 to 40% for width and >200% for area) because width error is large relative to polygon width. Between 1918 and 1963, average channel widths decreased 8 m/yr, from 516 ± 67 m to 176 ± 7 m, mostly due to decreasing peak flows and the implementation of flood control and other engineering measures. From 1985 to 2008, widths decreased 0·7 m/yr, from 176 ± 23 m to 146 ± 5 m, accompanied by an increase in vegetated island area which largely coincided with low flow periods. Narrowing was concentrated at tributary inputs and in the upstream part of the reach, where bedload trapping by Cochiti Dam has caused degradation. Bank protection structures and dense vegetation limit bank erosion in the reach, but erosion is significant where expanding islands, incision, and increased meandering force water against banks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
River incision and vegetation dynamics in cut-off channels   总被引:1,自引:0,他引:1  
The consequences of river incision on ecosystems dynamics in cut-off channels were hypothesized to be 1) the reduction of river backflows and overflows of the river in the former channels; 2) the reduction of seepage flows from the river and drainage into the channels; 3) the drainage of the hillslope aquifer by the former channels. The subsequent changes of aquatic plant communities should be 1) the terrestrialization of the higher part of former channels and 2) their change into more oligotraphent ones if the hillslope aquifer is poorer in nutrients than the river. In those reaches where the river bed is aggraded, river backflows in the cut-off channel should increase, as should overflows and seepage, and more eutraphent species should develop. Changes in aquatic vegetation were studied over a ten-year period in four cut-off channels supplied by a nutrient-poor hillslope aquifer and a nutrient-rich river. Two of them were located in an incised reach of the river, one in an aggraded reach and one (reference) in a reach that was neither aggraded nor incised. The vegetation of the reference channel exhibited only minor changes over the ten-year period, indicating that the successional trend is not perceptible at the time scale of the study, and thus that any change observed in the other channels can be ascribed to river incision or aggradation. Terrestrialization expected in the channels located in the incised reach clearly progressed in the downstream parts, but was inhibited by groundwater supplies in the upper parts. As expected, oligotraphent communities progressed or remained dominant in the upper part. The channel located in the aggraded reach of the river exhibited the highest floristic changes. As expected, eutraphent communities progressed in this channel, but unexpectedly, terrestrialization also progressed in the upstream part. Alternative explanations are: 1) aggradation could have instigated more backflows and overflows without modifying significantly the mean water-level and 2) more frequent water overflows could have favoured alluvial deposition and thus terrestrialization.  相似文献   

18.
Rivers may dramatically change course on a fluvial plain. Such an avulsion temporarily leads to two active channels connected at a bifurcation. Here we study the effect of dynamic meandering at the bifurcation and the effect of channel width adjustment to changing discharge in both downstream branches on the evolution of a bifurcation and coexisting channels. As an example, we reconstructed the last major avulsion at the Rhine delta apex. We combined historical and geological data to reconstruct a slowly developing avulsion process spanning 2000 years and involving channel width adjustment and meandering at the bifurcation. Based on earlier idealised models, we developed a one‐dimensional model for long‐term morphodynamic prediction of upstream channel and bifurcates connected at the bifurcation node. The model predicts flow and sediment partitioning at the node, including the effect of migrating meanders at the bifurcation and channel width adjustment. Bifurcate channel width adaptation to changing discharge partitioning dramatically slows the pacing of bifurcation evolution because the sediment balance for width adjustment and bed evolution are coupled. The model further shows that meandering at the bifurcation modulates channel abandonment or enlargement periodically. This explains hitherto unrecognised reactivation signals in the sedimentary record of the studied bifurcation meander belts, newly identified in our geological reconstruction. Historical maps show that bifurcation migration due to meander bend dynamics increases the bifurcation angle, which increases the rate of closure of one bifurcate. The combination of model and reconstruction identifies the relevant timescales for bifurcation evolution and avulsion duration. These are the time required to fill one downstream channel over one backwater length, the time to translate one meander wavelength downstream and, for strong river banks, the adaptation timescale to adjust channel width. The findings have relevance for all avulsions where channel width can adjust to changing discharge and where meandering occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Major hydraulic discontinuities along lowland rivers may be caused by water impoundment behind weirs, by tributary floods, and by tides. An analysis of the geometry of 122 surveyed channel cross-sections located on an 18 km reach of the lower River Dee identifies up to three levels in the bank profile representing minima in the width:mean depth ratio, and distinct changes in the geometric properties of the channel to these three levels in a downstrem direction and within four stretches influenced to varying degrees by hydraulic discontinuities created by a weir and by tidal overtopping of the weir. Simple modelling combined with field observations suggest possible processes that may control the observed changes in channel morphology. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号