首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Prediction of areas prone to land degradation in agricultural catchments is a complex task. This is due to the difficulties encountered in data gathering over wide regions and in the translation of existing scientific knowledge to a quantitative and spatially explicit risk assessment system. This paper incorporates the use of remotely sensed data, terrain analysis and a multi‐criteria mechanism for evaluating risks of soil loss, water ponding, and sediment deposition in a mid‐size agricultural Mediterranean catchment, under 80 years of intensive cultivation. The research uses simulations to study the effect of topographic attributes, soil characteristics, vegetation cover, rainfall intensity and human activities on the three above‐mentioned processes. The results show that, from the methodological point of view, the integration of knowledge from several experts yields better predictive results than relying on a single expert, even the one found to be most consistent. Also, the use of a simple weighted linear combination was more useful than the more sophisticated computerized programming technique. From the phenomenological point of view, the increase in rainfall intensity and land‐use transformation from orchard to field‐crops has led to a significant increase in soil loss and sediment yield, while extreme changes in tillage direction have only yielded minor changes in water ponding. The developed system's predictive capabilities also show that the outcomes can be used as a basis for decisions on catchment management in regions of high environmental sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Proper agricultural land management strategies improve soil structural properties, thereby reducing soil loss by water erosion. This study was conducted to estimate soil losses from plots of different agricultural land management using the Water Erosion Prediction Project (WEPP) (95.7) model. The study took place in a semiarid region in Kenya. The mean annual rainfall was 694 mm. The WEPP (95.7) model was initially used to estimate total sediment loading from the catchment into a reservoir. The estimate was about 2871 t corresponding to an average sedimentation rate of 1063 t km?2 year?1, which was about 76% of the measured total sediment inflow into the reservoir. Soil losses were estimated within 10 plots on the catchment of different sizes and slopes with the following treatments: conventional tillage (hand hoeing) with maize and soybean intercropping (HOCOBE); conservation tillage (disc plough) with maize and soybean intercropping (COBEAN); conservation tillage with only maize cultivation (CNTCORN); and conservation tillage with only soybean cultivation (CNTBEAN). The soil loss reduction of COBEAN, CNTCORN and CNTBEAN relative to HOCOBE ranged between 27–47%, 16–29% and 12–25%, respectively, depending on the size and slope of the plot. In general, conservation tillage reduced soil loss relative to conventional tillage. However, with conservation tillage, the single cropping system resulted in greater soil loss than the intercropping system. In the case of single cropping with conservation tillage, the soil loss reduction for maize ranged between 4 and 9%, relative to soybean. Overall, the study showed that there would be a significant reduction of soil losses from plots if conservation tillage with an intercropping system (maize and soybean) were to be adopted on agricultural lands in semiarid regions.  相似文献   

3.
Accurate estimations of water retention and detention are needed to simulate surface runoff and soil erosion following a rainfall event in a catchment. Several equations to estimate the amount of surface depressional storage, the fraction of the soil surface covered by water and the amount of rainfall excess needed to start surface runoff have been developed by Onstad (1984). The random roughness and slope gradient are needed for those estimations. Surface micro-elevation data have been gathered by a photographic method. The random roughness was determined from those elevation measurements. Several factors which have an impact on the soil surface roughness were taken into account. The main sources of influence are the type of land use, the crop stage within the growing period and tillage direction. Analyses of variance indicated that the variation in the RR-index could be explained mainly by type of land use, orientation and field type. The temporal variation was relatively small. Gradient data have been determined from a digital elevation model, constructed by digitizing contours. Combining the random roughness and the steepness of slope, the amounts of surface water retention and detention could be estimated. Knowledge of water retention and detention will improve the estimations of runoff and soil erosion modelling in catchments, such as those made with the LISEM model. The agricultural systems examined in this study have similar random roughness values in summer. Different soil erosion rates for several types of land use can not therefore be explained by the random roughness.  相似文献   

4.
This paper explores a scale‐adapted erosion mapping method which aims at a rapid assessment of field erosion and sediment transport pathways in catchments up to several square kilometres and compares the results with the output of a well‐known erosion model (LISEM). The mapping method is based on an event‐defined classification scheme of erosion intensity (zero, weak, moderate and strong) that is applied to arable fields, in combination with incision measurements of erosion features for each erosion intensity class on a small sample of fields. Sediment deposition is classified on the basis of quantity indicators and abundance. In addition, relevant conditions and erosion factors are determined for each field. The method was applied to an agricultural catchment (4·2 km2) in the Sundgau (Alsace), after a short but violent thunderstorm in May 2001, to illustrate its potential use and its limitations. The rainfall event led to strong erosion on the arable fields and a muddy flow that caused significant damage in the built‐up area. On the basis of the analyses of the incision measurements in combination with the mapping of erosion intensity classes, total erosion for the catchment was estimated as 15 000 t (an average of about 36 t[sol ]ha). Sediment deposition was found to occur in three major locations: (1) in thalwegs at the interface between maize and downslope winter wheat fields, (2) in downslope headlands where the flow direction suddenly changed due to oriented tillage structures in the perpendicular direction, and (3) the lowest corners of fields which collect all the runoff from the field. Preliminary data analyses suggest that erosion intensity is related to field size and[sol ]or tillage direction and to slope morphology. Model output (LISEM) appeared to depend more strongly on slope gradient than the results obtained with the mapping method. The method yields a database, which can be used as a foundation for conservation strategies in small regions with similar land use and geomorphology. The mapping and modelling methods are compared, and their complementary aspects are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
For sake of improving our current understanding on soil erosion processes in the hilly–gully loess regions of the middle Yellow River basin in China, a digital elevation model (DEM)-based runoff and sediment processes simulating model was developed. Infiltration excess runoff theory was used to describe the runoff generation process while a kinematic wave equation was solved using the finite-difference technique to simulate concentration processes on hillslopes. The soil erosion processes were modelled using the particular characteristics of loess slope, gully slope, and groove to characterize the unique features of steep hillslopes and a large variety of gullies based on a number of experiments. The constructed model was calibrated and verified in the Chabagou catchment, located in the middle Yellow River of China and dominated by an extreme soil-erosion rate. Moreover, spatio-temporal characterization of the soil erosion processes in small catchments and in-depth analysis between discharge and sediment concentration for the hyper-concentrated flows were addressed in detail. Thereafter, the calibrated model was applied to the Xingzihe catchment, which is dominated by similar soil erosion processes in the Yellow River basin. Results indicate that the model is capable of simulating runoff and soil erosion processes in such hilly–gully loess regions. The developed model are expected to contribute to further understanding of runoff generation and soil erosion processes in small catchments characterized by steep hillslopes, a large variety of gullies, and hyper-concentrated flow, and will be beneficial to water and soil conservation planning and management for catchments dealing with serious water and soil loss in the Loess Plateau.  相似文献   

8.
Under increasing population pressure, soil erosion has become a threat in the East African Highlands, and erosion modelling can be useful to quantify this threat. To test its applicability for this region, the LISEM soil erosion model was applied to two small catchments, one in the Usumbara Mountains, Tanzania, and the other on the slopes of Mount Kenya. Input data for the model were collected in both catchments, as were data on runoff and erosion that were used for calibration and validation of the model. LISEM was first calibrated on catchment outlet data, and afterwards simulated spatial patterns of erosion were compared to available erosion data. The results showed that LISEM can, after calibration, give good discharge predictions for some events, but not for all. However, LISEM generally overpredicted soil loss from the catchments. Comparison with observed erosion patterns did not show overprediction, but according to the model, erosion was more widespread than was observed. There are several reasons for these discrepancies. First, it is difficult to obtain enough accurate data to run the model, such as accurate maps, rainfall data and soil and plant characteristics. Second, it is also difficult to obtain accurate data to evaluate the performance of the model, either for the catchment outlet or spatially, therefore observed erosion rates are also uncertain. Third, the model could not deal correctly with complex events, i.e. those having double rainfall peaks, and might also have difficulties with catchment characteristics such as soil type and the complexity of land use. Finally, LISEM could not deal with events in which throughflow or baseflow played a role, which was to be expected since those processes are not simulated by LISEM. Nevertheless, LISEM could be calibrated to give good discharge predictions for some events, and also gave reasonable results when compared to data obtained from erosion plots. Furthermore, only complex, distributed, storm‐based models such as LISEM can give spatial predictions for single storms. Therefore, it is concluded that if the aim is spatial prediction on an event basis, there is no alternative to complex erosion models such as LISEM, but if the aim is to predict average annual erosion, the data‐demanding, physically based LISEM erosion model may not be the most appropriate model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
No-till (NT) is a soil management system designed to protect soil resources from water erosion and provide numerous benefits compared to conventional tillage through the increase of organic matter inputs into the soil. However, NT in isolation is not sufficient to control erosion processes caused by an excessive production of surface runoff. This study evaluated soil losses on agricultural hillslopes under no-till characterized by contrasted water, soil, and crop management conditions. To this end, water and soil losses were monitored between 2014 and 2018 at two scales, including four macroplots (0.6 ha; 27 events) and two paired zero-order catchments (2.4 ha; 63 events). The resulting dataset covered a wide range of rainfall conditions that occurred in contrasted soil, crop, and runoff management conditions. Hyetographs, hydrographs, and sedigraphs were constructed, and these data were used to evaluate the impact of management on sediment yields, including that of terraces, scarification, and phytomass on sediment yield. The installation of terraces reduced sediment yield by 58.7%, mainly through surface runoff control. Crop management including an increased phytomass input efficiently controlled soil losses (63%), although it did not reduce runoff volume and peak flow. In contrast, scarification had no impact on runoff and soil losses. The current research demonstrated the need to combine the installation of terraces and leaving a high amount of phytomass on the soil to control surface runoff and erosion and reduce sediment yield. The current research therefore reinforces the relevance of the monitoring strategy conducted at the scale of macroplots and zero-order catchments to evaluate the impact of contrasted water, soil, and crop management methods and select the most effective conservation agriculture practices.  相似文献   

12.
There is increasing recognition that 137Cs data remain one of the few sources of spatially distributed information concerning soil erosion. However, many of the conversion models that have been used to convert 137Cs data into soil redistribution rates failed to account for some of the key factors affecting the redistribution of 137Cs in agricultural landscapes. The conversion model presented in this paper aims to overcome some of the limitations associated with existing models and therefore to provide more realistic estimates of soil erosion rates on agricultural land. The conversion model aims at coupling soil redistribution processes directly with 137Cs redistribution. Emphasis is placed on the spatial representation of soil redistribution processes and the adequate simulation of tillage processes. The benefits of the presented model arise from the two‐dimensional spatial integration of mass balance models with soil erosion models. No a priori assumptions about the intensity of any soil redistribution process are necessary and the level of agreement between observed and simulated 137Cs inventories enables us to evaluate the performance of the model. The spatial implementation and the use of fuzzy parameter sets also allow us to assess the uncertainties associated with soil erosion estimates. It was shown that an adequate simulation of tillage processes is necessary and that simplified tillage models may lead to erroneous estimates of soil redistribution. The model was successfully applied to a study site in the Belgian Loam Belt and the results indicated that tillage is the dominant process. Furthermore, the uncertainties associated with the estimation of water erosion rates were much higher than those associated with tillage, especially for depositional areas. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Amorphous silica (ASi) carried in suspension by rivers is an important component in the global Si budget. Water erosion processes in cultivated catchments are likely to drive ASi delivery to the river system. However, no studies have investigated the controls on ASi mobilization by erosional processes in croplands. Rainfall experiments were performed on split fields (i.e. a part conventionally ploughed and a part under reduced tillage) to simulate ASi mobilization by inter‐rill erosion in croplands, and identify its dependency on soil, field and rainfall characteristics. The ASi content of the soil and the inter‐rill erosion rate were determined as the major controls on ASi mobilization. Variables such as tillage technique and crop type did not have a consistent direct or indirect effect. Inter‐rill erosion is clearly selective with respect to ASi, indicating association of ASi with the fine soil fraction and with soil organic carbon. Our experiments demonstrate that erosion increases due to human perturbation will increase the delivery of reactive Si to aquatic systems. We estimate that globally, c. 7% of all reactive Si that enters aquatic systems is derived from erosion of agricultural soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the potential contribution of tillage erosion to landscape development using LEM LAPSUS. The model is calibrated separately for a water erosion process (i) without tillage and (ii) with tillage. The model is applied to the ~250 km2 Torrealvilla case study catchment, SE Spain. We were able to simulate alternating sequences of incision and aggradation, that are important on longer (millennial) timescales. Generally, model results show that tillage erosion adds to deposition in the lower floodplain area, but neither water erosion alone nor water with tillage erosion together could exactly reproduce the observed amounts of erosion and sedimentation for the case study area. In addition, scale effects are apparent. On hillslopes, tillage may contribute importantly to erosion and may fill local depressions. If assessed on the catchment scale, sediments from tillage erosion eventually reach the lower floodplain area where they contribute to deposition. However, water erosion was observed in the model simulations to be the most important process on the catchment scale. This is the first time that tillage erosion has been explicitly included in a landscape evolution model at a millennial timescale and large catchment scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Black marls form very extensive outcrops in the Alps and constitute some of the most eroded terrains, thus causing major problems of sedimentation in artificial storage systems (e.g. reservoirs) and river systems. In the experimental catchments near Draix (France), soil erosion rates have been measured in the past at the plot scale through a detailed monitoring of surface elevation changes and at the catchment scale through continuous monitoring of sediment yield in traps at basin outlets. More recently, erosion rates have been determined by means of dendrogeomorphic techniques in three monitored catchments of the Draix basin. A total of 48 exposed roots of Scots pine have been sampled and anatomical variations in annual growth rings resulting from denudation analysed. At the plot scale, average medium‐term soil erosion rates derived from exposed roots vary between 1·8 and 13·8 mm yr?1 (average: 5·9 mm yr?1) and values are significantly correlated with slope angle. The dendrogeomorphic record of point‐scale soil erosion rates matches very well with soil erosion rates measured in the Draix basins. Based on the point‐scale measurements and dendrogeomorphic results obtained at the point scale, a linear regression model involving slope angle was derived and coupled to high‐resolution slope maps obtained from a LiDAR‐generated digital elevation model so as to generate high‐resolution soil erosion maps. The resulting regression model is statistically significant and average soil erosion rates obtained from the areal erosion map (5·8, 5·2 and 6·2 mm yr?1 for the Roubine, Moulin and Laval catchments, respectively) prove to be well in concert with average annual erosion rates measured in traps at the outlet of these catchments since 1985 (6·3, 4·1 and 6·4 mm yr?1). This contribution demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and that they are a powerful tool for the quantification and mapping of soil erosion rates in areas where measurements of past erosion is lacking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Many investigations show relationships between topographical factors and the spatial distribution of soil moisture in catchments. However, few quantitative analyses have been carried out to elucidate the role of different hydrological processes in the spatial distribution of topsoil moisture in catchments. A spatially distributed rainfall—runoff model was used to investigate contributions of subsurface matric flow, macropore flow and surface runoff to the spatial distribution of soil moisture in a cultivated catchment. The model results show that lateral subsurface flow in the soil matrix or in macropores has a minor effect on the spatial distribution of soil moisture. Only when a perched groundwater table is maintained long enough, which is only possible if the subsurface is completely impermeable, may a spatial distribution in moisture content occur along the slope. Surface runoff, producing accumulations of soil moisture in flat flow paths of agricultural origin (field boundaries), was demonstrated to cause significant spatial variations in soil moisture within a short period after rainfall (<2 days). When significant amounts of surface runoff are produced, wetter moisture conditions will be generated at locations with larger upstream contributing areas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Long-term field assessments of soil erosion on the landscape scale are very scarce. Such monitoring programmes create sound data regarding severity, extent, frequency and types of soil erosion and the vulnerability of particular crops. In a 20-year monitoring programme between 1997 and 2017, accurate erosion damage mapping was carried out on 203 fields on arable land in the Canton of Berne (Switzerland). During 115 field inspections, 4060 field years and 2165 mapped erosion systems were recorded. Because several soil conservation programmes were implemented during this period, two 10-year time periods (1st October 1997 to 30th September 2007 [P1] and 1st October 2007 to 30th September 2017 [P2]) were established and compared. The soil erosion rate was already low in P1 (mean: 0.74 t ha−1 year−1), but decreased significantly in P2 (mean: 0.20 t ha−1 year−1). During P1 and P2, respectively, 12 and 42% of the fields were without any visible erosion. Within 10 years, erosion occurred on each field on average 3.2 times in P1 and only 1.3 times in P2. Soil losses are spatially concentrated and linked to topographically defined pathways (thalwegs, slope depressions) or human-made flow pathways (wheel tracks, tramlines, headlands). Financial incentives, rising awareness among farmers, innovative contractor farmers and good extension service of cantonal agencies helped conserve 85% of the arable land in the study area with conservation tillage methods by 2015. As a result, soil erosion was significantly reduced. The field-based measurements show that a significant decrease in soil erosion is possible by changes in soil tillage practices and that erosion control is feasible almost everywhere under real-life conditions on farmers’ fields. In this respect, the Frienisberg region is a case example of successful erosion control. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号