首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The spatial variability of air flow through complex topography is an important, but not fully understood, component of dune development and dynamics. This study examines the spatial variability of the wind field in a linear blowout in coastal dunes at Jockey's Ridge State Park, on the Outer Banks of North Carolina. A spatial array of single‐height anemometers and wind vanes were placed within the blowout. Topography exerted a significant steering effect when onshore winds approached from directions within 50° of the blowout axis. Under those conditions wind flow in the blowout aligned to the axis regardless of approach angle, maximizing the potential for erosion and transport in the trough. In other locations aspect variations caused deflection both proportional and disproportional to changes in the approaching wind. When prevailing winds approached from directions more oblique than 50° to the blowout axis, topographic steering through the blowout trough was reduced and secondary flow generated by flow separation over the trough became more prominent. During those approach angles, wind directions and speeds within the upper blowout trough became erratic as vortices and turbulence dominated the flow, minimizing transport potential. The changing characteristics of airflow in the blowout relative to differing approach angles has implications on dune development and variations in transport potential under changing conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relative wind speeds appear to be independent of general wind speed but dependent on wind direction. For perpendicular onshore winds the flow over the foredune is accelerated due to topographic changes and decelerated due to changes in surface roughness. Accelerations dominate over decelerations on the seaward slope. The pattern of acceleration and deceleration in relation to wind direction is more or less comparable for different foredunes, but the magnitudes differ. An increase in foredune height from 6 to 10m leads to an increase in speed-up near the top of the seaward slope from 110 to 150 per cent during onshore wind, but further increase of foredune height from 10 to 23m appears to have little effect, due to increased roughness and deflection of flow. Topography also influences the direction of the flow. Between beach and top, the flow deflects in the direction of the normal during onshore winds. During offshore winds the flow is deflected to the parallel. Near the dunefoot, deflection is always in the direction of the parallel, and increases with steeper topography. The maximum deflection near the dunefoot was 90°, over a 23 m high dune, observed during offshore winds. Patterns of erosion and sedimentation resulting from winds from different directions can be explained by the observed accelerations and decelerations. Owing to speed-up on the seaward front of the foredune, sand transport capacity of the wind increases, which results in erosion if vegetation is absent. During strong onshore wind, sand is lifted near the dunefoot and moves over the foredune in suspension. During weaker winds, vertical wind velocities do not exceed fall velocities of the sand grains, and most of the sand is deposited near the dunefoot.  相似文献   

4.
Near‐surface airflow over a morphologically simple, vegetated, 8 m high foredune with a small wave‐cut scarp was measured for onshore to oblique‐onshore conditions during a low‐moderate (5–6 m s‐1 ) wind event and a high velocity (11–18 m s‐1) sand‐transporting gale event. Flow across the foredune was characterized by significant flow compression and acceleration up and across the foredune during both events. During the gale, a pronounced jet (speed bulge) developed at the foredune crest, which increased in magnitude with increasing wind speed. The vertical (W) velocity component of the 3D flow field was positive (upwards) across the stoss slope under low wind conditions but negative (downwards) during gale wind conditions, with upslope acceleration. During the low velocity event, there was speed‐down within the vegetation canopy, as would be expected for a porous roughness cover. During the strong wind event there was speed‐up in the lower portion of the vegetation canopy, and this was found up the entire stoss slope. Sediment transport during the gale force event was substantial across the beach and foredune despite the moderate vegetation cover and minimum fetch. Aeolian suspension was evident in the lee of the dune crest. The observations presented herein show that strong storm winds are an effective mechanism for translating sediment landwards across a high vegetated foredune, contributing sediment to the stoss slope, crest and leeward slopes of the foredune and backing dunes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The nature of wind flow over a small, 0.6 m high foredune scarp is investigated on the Sir Richard Peninsula, South Australia during a variety of incident wind directions and speeds. The study provides additional supporting evidence that the presence of the scarp and the dune exerts a strong influence on a landwards trending reduction in wind velocity and an increase in turbulence, with the greatest area of turbulence occurring near and at the foredune scarp base. For an incident oblique wind, an alongshore helicoidal flow is formed within a separation region along the scarp basal region. In this region, the coefficient of variation (CV) of wind speed is high and displays significant fluctuations. The flow at the scarp crest is compressed, streamlined and accelerated, turbulence is suppressed, and local jets may occur depending on the incident wind approach angle. Jets are more likely where the incident flow is perpendicular or nearly so. A flow separation region does not develop downwind of the scarp crest where the morphology of the foredune stoss slope downwind of the scarp is more convex (as in this case) rather than relatively flat, and possibly due to the presence of vegetation at the scarp crest. A tentative model of the flow regions developed across a backshore–scarp–foredune region during oblique incident flow is provided. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Studies of sediment transport on developed coasts provide perspective on how human adjustments alter natural processes. Deployment of sand‐trapping fences is a common adjustment that changes the characteristics of the dune ramp and its role in linking sediment transfers from the backshore to the foredune. Fence effects were evaluated in the field using anemometer arrays and vertical sediment traps placed across a beach and dune at Seaside Park, New Jersey, USA during onshore and longshore winds. The foredune is 18 m wide and 4.5 m above the backshore. The mean speed of onshore winds at 0.5 m elevation decreased by 17% from the berm crest to the upper ramp and 36% in the lee of a fence there. Sediment transport during mean wind speeds up to 8.0 m s?1 at 0.5 m elevation was < 0.06 kg m?1 h?1 on the berm crest and backshore where fetch distances were < 45 m and surface sediment was relatively coarse (0.74–0.85 mm) but increased to 5.63 kg m?1 h?1 on the upper ramp aided by the longer fetch distances (up to 82 m) and finer grain size of the source sediment there (0.52 mm). Sediment transport along the berm crest and backshore during longshore winds, where fetch distances were > 200 m, was up to 58.69 kg m?1 h?1, about three orders of magnitude greater than during the onshore winds. Fences can displace the toe of the ramp farther seaward than would occur under natural conditions. They can create a gentler slope and change the shape of the ramp to a more convex form. A fence on the ramp can cut off a portion of sediment supply to the upper slope. Decisions about fence placement thus should consider these morphologic changes in addition to the effects on dune volume. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Accurate knowledge of the surface roughness and the resultant wind speed are important for many applications, such as climatic models, wind power meteorology, agriculture and erosion hazards, especially on sand dunes in arid and semi‐arid environments, where vegetation cover is scarce. In this study we aimed at quantifying the effects of vegetation cover and topography on surface roughness over a stabilizing dune field on the southern coast of Israel. Forty‐six wind measurements were made at various distances from the coastline, ranging from 10 to 2800 m, and z0 values were calculated from the wind measurements based on the ratio between the wind gust and the average wind speed. We estimated vegetation cover using the soil adjusted vegetation index (SAVI) from Landsat satellite images for the upwind sector at various lengths, ranging from 15 to 400 m, and based on digital elevation models and differential GPS field measurements we calculated the topographic variable of the relative heights of the stations. z0 values were positively correlated with the winter SAVI values (r = 0·87 at an upwind length of 200 m) and negatively correlated with the relative height (r = ?0·68 at an upwind length of 200–400 m for the inland dune stations). Using these variables we were able to create a map of estimated z0 values having an accuracy of over 64%. Such maps provide a better understanding of the spatial variability in both wind speed and sand movement over coastal dune areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the friction velocity over the surface. This model is dynamically linked to a model that calculates sand transport rates and the resulting changes in elevation. The sand transport model is discussed in a separate paper. The simulated wind speeds resemble patterns observed during field experiments. Despite the increased wind speed over the crest, the friction velocity at the crest of a bare dune is reduced compared to the upstream value, because of the effect of stream line curvature on turbulence. These curvature effects explain why desert dunes can grow in height. In order to obtain realistic predictions of friction velocity it was essential to include equations for the turbulent variables in the model. In these equations streamline curvature is an important parameter. The main flaw of the model is that it cannot deal with flow separation and the resulting recirculation vortex. As a result, the increase of the wind speed and friction velocity after a steep dune or a slipface will be too close to the dune foot. In the sand transport model this was overcome by defining a separation zone. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Airflow patterns through a saucer blowout are examined from wind speed and direction measurements made during a chinook wind event. The blowout long‐axis is oriented east–west with a broad depositional apron on the east side. Wind directions during the event rotated from south‐westerly to westerly, permitting an assessment of oblique and axis‐parallel flows. Results show that airflow passing over the windward rim of the saucer blowout expands and decelerates, leading to flow separation and a small re‐circulation zone on sheltered lee slopes. Near the deflation basin, airflow re‐attaches to the blowout surface and accelerates up to a small opening in the east rim, where it can be up to 50% faster than on the windward edge. Beyond the downwind rim the airflow expands and decelerates and sand is deposited onto a broad apron. Similar to coastal trough blowouts, the degree of airflow steering and acceleration along the deflation basin is determined by the angle of incidence between the approach wind and the long‐axis of the blowout. As the angle of incidence increases wind speed accelerates at 0·3 m above the surface of the deflation basin and the degree of airflow steering increases. Overall, a two‐fold process is identified, where south‐westerly flows have greater potential for eroding the deflation basin, while westerly flows have greater potential for evacuating sand from within the blowout. Visual observations indicate that sand eroded from the deflation basin during south‐westerly flows is re‐distributed to adjacent zones of low wind speed until axis‐parallel winds evacuate the sand through the opening in the east rim. Morphometric changes since 1994 indicate that the blowout morphology has remained relatively constant, suggesting a persistent interplay between oblique and axis‐parallel wind erosion events. Collectively, these findings indicate that the angle of approach winds is an important control on saucer blowout morphodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment transport and short‐term morphologic change were evaluated at a site where sand fences are deployed and the beach is raked (Managed Site) and a site where these human adjustments are not practiced (Unmanaged Site). Data were gathered across the seaward portion of a low foredune when winds blew nearly shore‐normal at mean speeds 8.9 to 9.3 m s‐1. Data from traps revealed sediment transport rates at unvegetated portions of the foredune crest (40.2 to 43.5 kg m‐1 h‐1) were greater than on the backshore (4.9 to 11.2 kg m‐1 h‐1) due to onshore decreases in surface moisture and speed‐up of the wind passing over the foredune. Data from erosion pins indicate sediment input to the dune was 1.48 m3 m‐1 alongshore at the Managed Site and 1.25 m3 m‐1 at the Unmanaged Site. The Unmanaged Site had deposition at the dune toe, erosion at mid‐slope, and deposition at the crest. Deposition occurred at mid‐slope on the Managed Site near a partially buried (0.58 m high) fence with a porosity of about 65%. Deposition at partially buried wrack on the upper backshore and dune toe at the Unmanaged Site was about twice as great as deposition in this zone at the Managed Site. Results indicate that: (1) the seaward slope of the foredune can be a more important source of sand to the lee of the crest than the beach; (2) wrack near the toe can decrease transport into the foredune; (3) a scour zone can occur on the foredune slope above the wrack line; (4) a fence placed in this location can promote deposition and offset scour, but fences can restrict delivery of sediment farther inland. Evaluation of alternative configurations of fences and strategies for managing wrack is required to better determine the ways that humans modify foredunes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Topographic changes in two blowouts located in Island Beach State Park, New Jersey, USA were monitored over the winter of 1981-1982. Elevation changes were measured with erosion pins, and sediment traps placed at comparable locations in each blowout monitored the amount of sand moved by the wind. Discrete wind events were identified from regional data, and morphological data for the intervals with the highest onshore and offshore wind speeds are examined in detail. Vegetation is the primary influence on the development of the two blowouts. Blowout A is characterized by eroding sidewalls, a stable base, and an accreting blowout rim. High rates of sediment transport occur through the blowout throat which results in accretion on the vegetated rim. This blowout is an active sediment transfer system. Vegetation causes a large amount of deposition in the throat of blowout B. As vegetation was buried over the winter, the area of deposition migrated inland. Sidewall erosion also occurred in blowout B. Little change was recorded on the blowout rim. Blowout B is a recovering system where sediment is delivered to the blowout floor from the beach by onshore winds and from the blowout rim by offshore winds where it is stabilized by vegetation. The development of foredune blowouts is governed largely by vegetation cover on the dune crest and by sidewall erosion during offshore and onshore winds. Blowout recovery depends on vegetation growth and sediment deposition in the throat, and on the role of the sidewalls as sources of sediment which is deposited elsewhere within the system. Foredune blowouts are dynamic systems in which positive feedbacks in sediment availability and vegetation growth lead to a cycle of development and closure.  相似文献   

16.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Aeolian sand transport was studied at the Lanphere Dunes, a coastal dune complex in northern California, by comparing slipface advance rates with transport predicted based on local wind data. The slipfaces of a 2·5 m high transverse ridge and 10 m high parabolic dune were monitored over a period of three months to estimate sand discharge. The study was performed during the dry season, which has the maximum sand‐driving potential. Over the three month study period, average sand discharge was 12·5 m3 per m width per year at the transverse ridge and 8·8 m3 per m width per year at the parabolic dune. A method was developed for modelling slipfaces that are sinuous and where sediment transport rates are not constant across the width of the slipface. Field measurements were used to generate three‐dimensional representations of dune slipfaces. Periodic measurements over the course of three months were used to compute the volume of displaced sediment. Theoretical sand transport was computed from local wind data using the Bagnold model and compared with the observed transport rates. Predicted rates were substantially lower than observed rates. Wind velocities rarely exceeded the threshold velocity. Discrepancies between the observed and predicted values appear to be caused by a combination of wind data recording procedures and differences between wind velocities at the anemometer location and the site where sand transport was measured. Wind data collected by weather bureaux have been utilized in numerous studies for modelling sediment transport. Such data typically have sample intervals of one hour or greater and are often averaged prior to reporting. The effect of averaging was investigated by comparing sand transport estimates based on daily average wind velocities with those based on the original hourly observations. The daily average data were depleted of high velocity winds and sand transport estimates were accordingly much lower than those based on the hourly data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A number of studies have measured and numerically modelled near surface wind velocity over a range of aeolian landforms and made suppositions about topographic change and landform evolution. However, the precise measurement and correlation of flow dynamics and resulting topographic change have not yet been fully realized. Here, using repeated high-resolution terrestrial laser scanning and numerical flow modelling within a bowl blowout, we statistically analyse the relationship between wind speed, vertical wind velocity, turbulent kinetic energy and topographic change over a 33-day period. Topographic results showed that erosion and deposition occurred in distinct regions within the blowout. Deposition occurred in the upwind third of the deflation basin, where wind flow became separated and velocity and turbulent kinetic energy decreased, and erosion occurred in the downwind third of the deflation basin, where wind flow reattached and aligned with incident wind direction. Statistical analysis of wind flow and topographic change indicated that wind speed had a strong correlation with overall topographic change and that vertical wind velocity (including both positive and negative) displayed a strong correlation with negative topographic change (erosion). Only weak or very weak correlations exist for wind flow parameters and positive topographic change (accretion). This study demonstrates that wind flow modelling using average incident wind conditions can be utilized successfully to identify regions of overall change and erosion for a complex aeolian landform, but not to identify and predict regions where solely accretion will occur. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Jet flow over foredunes   总被引:1,自引:0,他引:1       下载免费PDF全文
Jet flows, which are localized flows exhibiting a high speed maxima, are relatively common in nature, and in many devices. They have only been occasionally observed on dunes, and their dynamics are poorly known. This paper examines computational fluid dynamic (CFD) two‐dimensional (2D) modelling of jet flow over a foredune topography. Flow was simulated in 10° increments from onshore (0°) to highly oblique alongshore (70°) incident wind approach angles. CFD modelling reveals that the formation of a jet is not dependent on a critical wind speed, and an increase in incident wind velocity does not affect the magnitude of jet flow. A jet is first formed at ~1.0 m seawards of the foredune crest on the Prince Edward Island foredune morphology example examined here. A jet is not developed when the incident wind is from an oblique approach angle greater than ~50° because there is significantly less flow acceleration across a much lower slope at this incident angle. The presence of a scarp does influence the structure of the crest jet, in that the jet is more pronounced where a scarp is present. Surface roughness affects the magnitude of jet expansion and jets are better developed on bare surfaces compared to vegetated ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号