首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study develops a straightforward approximate method to estimate inelastic displacement ratio, C1 for base‐isolated structures subjected to near‐fault and far‐fault ground motions. Taking into account the inelastic behavior of isolator and superstructure, a 2 degrees of freedom model is employed. A total of 90 earthquake ground motions are selected and classified into different clusters according to the frequency content features of records represented by the peak ground acceleration to peak ground velocity ratio, Ap/Vp. A parametric study is conducted, and effective factors in C1 (i.e., fundamental vibration period of the superstructure, Ts; postyield stiffness ratio of the superstructure, αs; strength reduction ratio, R; vibration period of the isolator, Tb; strength of the isolator, Q; ratio of superstructure mass to total mass of the system, γm) are recognized. The results indicate that the practical range of C1 values could be expected for base‐isolated structures. Subsequently, effective parameters are included in simple predictive equations. Finally, the accuracy of the proposed approximate equations is evaluated and verified through error measurement, and comparisons are made in the analyses.  相似文献   

2.
本文根据Aki等人提出的尾波理论,导出了地方震尾波水平分量与垂直分量的持续时间比的具体表达式: τ_H/τ_V=I_H/I_V(Q_H/Q_V)~(1/4)·B_H/B_V。该式表明,τ_H/τ_V的变化主要反映了震源体一定范围内,由于介质的各向异性而引起的尾波在不同方向上的激发及衰减能力的差异。本文还讨论了地震前τ_H/τ_V短临异常的物理机制,认为异常的产生与孕震期间介质内裂隙的出现和闭合有关。1986年门源6.4级地震和1975年海城7.3级地震前,τ_H/τ_V都有不同程度的短期低值异常及临震高值突跳。门源地震前后门源台记录的直达S波的最大振幅比A_(mH)/A_(mv)也有与尾波持续时间比类似的异常。最后通过对一些震例的分析,初步得到震级与异常时间的关系为M=0.657lnT+3.44。  相似文献   

3.
Proposed is a new definition of earthquake response spectra, which takes account of the number of response cycles N. The Nth largest amplitude of absolute acceleration response of a linear oscilator with natural period T and damping ratio h, which is subjected to ground motion at its base, is defined as SA(T, h, N). By defining a reduction factor η(T, h, N) as SA(T, h, N)/SA(T, h, 1), characteristics of η(T, h, N) were investigated based on 394 components of strong motion records obtained in Japan. Two practical empirical formulae to assess the reduction factor η(T, h, N) are proposed.  相似文献   

4.
On November 7, 1976, an earthquake of the strike-slip fault type, and of magnitude 6.7, occurred at two mountainous localities, Yanyuan and Ninglang, in the border region of the Szechuan and Yunnan Provinces, China. One year before the earthquake, a prediction was made as to the magnitude and location of the impending earthquake by the present authors, on the basis of the results of a general survey of an area of about 20,000 km2 for Vp/Vs ratio variations. The prediction of time of occurrence was made afterwards by the combined analysis of results of observations of some other precursory phenomena. The actual occurrence of the event was generally considered as being in agreement with the prediction.The present study may be taken as a new example for the detection of Vp/Vs ratio variations prior to an earthquake of the strike-slip fault type. By considering the difference between the shear rupture and stick-slip motion and the anisotropy induced by dilatancy, a preliminary discussion is made concerning the related results.  相似文献   

5.
Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi‐parametric task, which is related to both epistemic and aleatory uncertainty. Along these lines, the objective of this paper is to investigate and quantify the elongated fundamental period of reinforced concrete structures using inelastic response spectra defined on the basis of the period shift ratio (Tin/Tel). Nonlinear oscillators of varying yield strength (expressed by the force reduction factor, Ry), post‐yield stiffness (ay) and hysteretic laws are examined for a large number of strong motions. Constant‐strength, inelastic spectra in terms of Tin/Tel are calculated to assess the extent of period elongation for various levels of structural inelasticity. Moreover, the influence that structural characteristics (Ry, ay and degrading level) and strong‐motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed for period lengthening as a function of Ry and Tel. These equations may be used in the framework of the earthquake record selection and scaling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   

8.
Pulse-like records are well recognized for their potential to impose higher demands on structures when compared with ordinary records. The increased severity of the structural response usually caused by pulse-like records is commonly attributed to the spectral increment around the pulse period. By comparing the building response to sets of spectrally equivalent pulse-like and ordinary records, we show that there are characteristics of pulse-like records beyond the shape of the acceleration response spectrum that affect the results of nonlinear dynamic analysis. Nevertheless, spectral shape together with the ratio of pulse period to the first-mode structural period, Tp/T1, are confirmed as “sufficient” predictors for deformation and acceleration response metrics in a building, conditioned on the seismic intensity. Furthermore, the average spectral acceleration over a period range, AvgSA, is shown to incorporate to a good proxy for spectral shape, and together with Tp/T1, form an efficient and sufficient intensity measure for response prediction to pulse-like ground motions. Following this latter route, we propose a record selection scheme that maintains the consistency of Tp with the hazard of the site but uses AvgSA to account for the response sensitivity to spectral shape.  相似文献   

9.
Duration of high frequency (5–25 Hz) radiation of energy from earthquake sources in California is consistent with the estimates of fault length and with dislocation velocity estimates of 2–3 km/sec. This duration can be described by an exponential function of magnitude for 2·5 < M < 7·5. It is related to the times it takes the dislocation to spread over the fault width (1/f2), and the fault length (~ 1/f1), and to reach its ultimate amplitude (T0). The results in this paper can be used to estimate the range of amplitudes and the duration of long period pulses of strong ground motion near faults, as these long period pulses can be related to the properties of high-frequency radiation from the source. Such pulses must be considered in the analyses of yielding structures, when the average peak acceleration of the pulse exceeds the yield resistance seismic coefficient of the structure.  相似文献   

10.
Displacement response spectrum (DRS), as the input, is of great significance to the displacement-based design just like the acceleration response spectrum to the traditional force-based design. Although the procedure of performance-based, in particular the displacement-based design has achieved considerable development, there is not a general DRS covering an enough long period range for common seismic design yet. This paper develops a systematic ground motion data processing procedure for the purpose of correcting the noise in the earthquake records and generating consistent DRS for seismic design. An adaptive algorithm is proposed to determine the cutoff frequency of the high-pass digital filter. The DRS of more than 500 recorded earthquake ground motions are generated and they are classified into three groups according to the ratio of the peak ground acceleration to the peak ground velocity (A/V) and/or the ratio of the peak ground velocity to the peak ground displacement (V/D). In each group, all the ground motions are normalized with respect to a selected scaling factor. Their corresponding DRS are obtained and then averaged to get the mean and standard deviation DRS, which can be used for both deterministic and probabilistic displacement-based design.  相似文献   

11.
This paper investigates the non-linear inelastic seismic response of existing single-span simply supported bridges having bearings which can remain stable and slide after their anchor bolts are ruptured. A simplified equivalent model is developed for the inelastic analysis of these single-span simply supported bridges. Non-linear inelastic time-history analyses are conducted for various acceleration inputs. It is found that narrower bridges with longer spans may have considerable sliding displacements and fall off their supports if adequate seat width is not provided. It is also found that for the same ratio of friction coefficient to peak ground acceleration, the sliding displacement of a structural system is linearly proportional to the amplitude of the peak ground acceleration beyond a certain threshold value. This is also demonstrated analytically from an energy approach point of view. The distribution of the energy content of an earthquake, which is related to its velocity time history, can be an indication of the propensity of an earthquake to cause high sliding displacements. Ground motions with high frequency content or high Ap/Vp ratio may produce smaller sliding displacements than ground motions with relatively lower Ap/Vp ratios.  相似文献   

12.
Gully morphology characteristics can be used effectively to describe the status of gully development. The Chabagou watershed, located in the hilly‐gully region of the Loess Plateau in China, was selected to investigate gully morphological characteristics using a 3D laser scanning technique (LIDAR). Thirty‐one representative gullies located at different watershed locations and gully orders were chosen to quantitatively describe gully morphology and establish empirical equations for estimating gully volume based on gully length and gully surface area. Images and point cloud data for the 31 gullies were collected, and digital elevation models (DEMs) with 10‐cm resolution were generated. ArcGIS 10.1 was then used to extract fundamental gully morphological parameters covering gully length (L), gully width (WT) and gully depth (D), and some derivative morphological parameters, including gully head curvature (C), gully width–depth ratio (w/d), gully bottom‐to‐top width ratio (WB/WT), gully surface area (Ag) and gully volume (Vg). The results indicated that gullies in the upper watershed and the second order were more developed based on their high values of gully head curvature. The potential for gully development increased from the second order to the fourth order. Within the same gully orders, gullies in the lower watershed were more active with more development potential. A method for differentiating between gully head and gully sidewalls based on the gully head curvature value was proposed with a mean relative error of 8.77%. U‐shaped cross‐sections were widely distributed in the upper watershed and upper positions of a gully, while V‐shaped cross‐sections were widely distributed in the lower watershed and lower positions of a gully. V–L and V–Ag empirical equations with acceptable accuracy were established and can be used to estimate gully erosion in the Loess hilly‐gully region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
通过对2003年1月1日—2013年4月1日芦山地震前震源区中小地震震源机制解的分析,发现不同阶段的震源机制解在一定程度上反映了强震孕育过程中构造应力场随时间的变化。震源区中小地震的P轴方位角C_V值在芦山M7.0地震发生前有一个上升-下降-上升的过程,只是相比于汶川8.0级地震前C_V值的下降-上升过程经历了更长的时间,这表明四川芦山M7.0地震的孕育经历了长时间的应力积累,与许多研究结果相一致。2007年1月1日—2014年4月1日C_V值空间分布的非均匀性特征在龙门山断裂带南段有显著的增强与减弱过程,对于发震地点可能有一定的指示意义。  相似文献   

14.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
To enhance the understanding of solute dynamics within the stream‐to‐riparian continuum during flood event‐driven water fluctuation (i.e., flood wave), a variable saturated groundwater flow and solute transport model were developed and calibrated against in situ measurements of the Inbuk stream, Korea, where seasonal flooding prevails. The solute dynamics were further investigated for flood waves (varying by amplitude [A], duration [T], roundness [r], and skewness [tp]) that were parameterised by real‐time stream stage fluctuations. We found that the solute transferred faster and farther in the riparian zone, especially within the phreatic zone, above which in the variable saturated zone the concentration required a significantly longer time, particularly at higher altitudes, to return to the initial state. By comparison, solute transferred shallowly in the streambed where the solute plume exhibited an exponential growth trend from the centre to the bank. The dynamic changes of solute flux and mass along the stream–aquifer interface and stream concentration were linked to the shape of flood wave. As the flood wave became higher (A↗), wider (T↗), rounder (r↘), and less skewed (tp↗), the maximum solute storage in aquifer increased. Maximum stream concentration (Cstr?max) not only presented a positive linear relationship with A or tp but also showed a negative logarithmic trend with increasing T or r. The sensitivity of Cstr_max to A was approximately two times that of tp, and between these values, the r was slightly more sensitive than T. Cstr?max linearly increased as hydraulic conductivity increased and logarithmically increased as longitudinal dispersivity increased. The former relationship was more sensitive than the latter.  相似文献   

16.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   

17.
Magnetic Resonance Sounding (MRS) is nowadays accepted as a new geophysical method that can be used for a reliable determination of the ground water content distribution in the top 150 m. A great effort has also been made in MRS development to deduce the hydraulic transmissivity, based on empiric relationships of the permeability with a factor F which is calculated with NMR parameters measured at laboratory scale. To use this relationship under field conditions a calibration coefficient CT = Tpt / F has to be previously established, which demands the knowledge of the transmissivity Tpt evaluated in the pumping test. The transmissivity can then be calculated at any other site of the same aquifer using the relation Tmrs = CTF. The CT values reported suggest a certain relationship with the lithology, but with a great dispersion and contradictory results. MRS surveys carried out in alluvial aquifers in Spain have shown that the value of CT evaluated at one site may not be valid at another place of the same aquifer, because of the great heterogeneity of this kind of geological environment. The demand of a pumping test at each site where a MRS is measured invalidates the method actually used for MRS transmissivity evaluation. More than 50 MRS have been used to propose a new methodology. The aquifers visited cover a great range of transmissivities (from 2 × 10− 6 to 9 × 10− 3 m2/s). The MRS signal amplitude varies between 20 and 1400 nV, the signal/noise ratio is in the range from 0.6 to 42, and the value of the decay time constant varies from 200 to 800 ms. It has been demonstrated that when the transmissivity increases, the value of F decreases, and CT increases, except for certain groups of MRS taken at the same aquifer or part of one aquifer, for which F increases with Tpt, keeping CT constant. A function CT(F) of the type CT = mF− n has been obtained that allows the transmissivity evaluation without the need of Tpt. Considering that both values of transmissivity, Tpt and Tmrs, are subjected to deviations due to the experimental errors as well as due to evaluation errors, the prediction achieved by the proposed equation is rather good. To perform a better evaluation of the values of the coefficients m and n it is necessary to have a greater number of MR soundings of good quality and with a trustworthy inversion at locations where a really comparable and good performed pumping test is available, covering a sufficient range of transmissivities. Though the data we have used do not always fulfil these conditions, the result is promising. Once a trustable function is available, the forecast of the transmissivity using MRS will not need the existence of any pumping test in the area. The general extension of this methodology demands the availability of MRS taken at all kinds of geological and hydrogeological environments, which is impossible without the existence of a universal MRS data base.  相似文献   

18.
A method was developed to obtain from a signal station the spatial and temporal distribution ofV p /V s ratios before earthquakes of magnitude>6. It was shown thatV p /V s values strongly depend upon the relative positions of the stations, the future large earthquake and the foci of the smaller earthquakes used forV p /V s determination. The appearance of a zone of anomalousV p /V s values with linear dimensions of the order of 100 km was noted at least 4 years before a deep earthquake of magnitude 7. Similar size anomalous zones were detected one year before some magnitude 6 earthquakes. V p /V s values decreased by a small but distinct amount during this time. Additionally, local short term minima inV p /V s ratios were observed some months before the major event. The epicenters of the large earthquakes were located within the 100 km size zone where the gradients of theV p /V s field were largest.  相似文献   

19.
We studied the applicability of two types of existing three-dimensional (3-D) basin velocity structure models of the Osaka basin, western Japan for long-period ground motion simulations. We synthesized long-period (3–20 s) ground motions in the Osaka basin during a M6.5 earthquake that occurred near the hypothetical Tonankai earthquake source area, approximately 200 km from Osaka. The simulations were performed using a 3-D finite-difference method with nonuniform staggered grids using the two basin velocity structure models. To study the ground motion characteristics inside the basin, we evaluated the wave field inside the basin using the transfer functions derived from the synthetics at the basin and a reference rock site outside the basin. The synthetic waveforms at the basin site were obtained by a convolution of the calculated transfer function and the observed waveform at the reference rock site. First, we estimated the appropriate Q values for the sediment layers. Assuming that the Q value depends on the S wave velocity V S and period T, it was set to Q = (1/3V S)(T 0/T) where V S is in m/s and the reference period T 0 is 3.0 s. Second, we compared the synthetics and the observations using waveforms and pseudovelocity response spectra, together with a comparison of the velocity structures of the two basin models. We also introduced a goodness-of-fit factor to the pseudovelocity response spectra as an objective index. The synthetics of both the models reproduced the observations reasonably well at most of the stations in the central part the basin. At some stations, however, especially where the bedrock depth varies sharply, there were noticeable discrepancies in the simulation results of the models, and the synthetics did not accurately reproduce the observation. Our results indicate that the superiority of one model over the other cannot be determined and that an improvement in the basin velocity structure models based on simulation studies is required, especially along the basin edges. We also conclude that our transfer function method can be used to examine the applicability of the basin velocity structure models for long-period ground motion simulations.  相似文献   

20.
CalculationoflongperiodresponsespectratoearthquakegroundmotionfromseismogramsofType513seismographsYANXIANGYU(俞言祥)SUYUNWAN...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号