首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents sedimentary evidence for rapid englacial debris entrainment during jökulhlaups. Previous studies of jökulhlaup sedimentology have focused predominantly on proglacial impact, rather than depositional processes within glaciers. However, observations of supraglacial floodwater outbursts suggest that englacial sediment emplacement is possible during jökulhlaups. The November 1996 jökulhlaup from Skei?arárjökull, Iceland presented one of the first opportunities to examine englacial flood deposits in relation to former supraglacial outlets. Using observations from Skei?arárjökull, this paper identifies and explains controls on the deposition of englacial flood sediments and presents a qualitative model for englacial jökulhlaup deposition. Englacial jökulhlaup deposits were contained within complex networks of upglacier‐dipping fractures. Simultaneous englacial deposition of fines and boulder‐sized sediment demonstrates that englacial fracture discharge had a high transport capacity. Fracture geometry was an important control on the architecture of englacial jökulhlaup deposits. The occurrence of pervasively frozen flood deposits within Skei?arárjökull is attributed to freeze‐on by glaciohydraulic supercooling. Floodwater, flowing subglacially or through upglacier‐dipping fractures, would have supercooled as it was raised to the surface faster than its pressure‐melting point could increase as glaciostatic pressure decreased. Evidence for floodwater contact with the glacier bed is supported by the ubiquitous occurrence of sheared diamict rip‐ups and intra‐clasts of basal ice within jökulhlaup fractures, deposited englacially some 200–350 m above the bed of Skei?arárjökull. Evidence for fluidal supercooled sediment accretion is apparent within stratified sands, deposited englacially at exceptionally high angles of rest in the absence of post‐depositional disturbance. Such primary sediment structures cannot be explained unless sediment is progressively accreted to opposing fracture walls. Ice retreat from areas of former supraglacial outbursts revealed distinct ridges characterized by localized upwellings of sediment‐rich floodwater. These deposits are an important addition to current models of englacial sedimentation and demonstrate the potential for post‐jökulhlaup landform development. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Theoretical studies of glacial outburst floods (jökulhlaups) assume that: (i) intraglacial floodwater is transported efficiently in isolated conduits; (ii) intraglacial conduit enlargement operates proportionally to increasing discharge; (iii) floodwater exits glaciers through pre‐existing ice‐marginal outlets; and (iv) the morphology and positioning of outlets remains fixed during flooding. Direct field observations, together with historical jökulhlaup accounts, confirm that these theoretical assumptions are not always correct. This paper presents new evidence for spatial and temporal changes in intraglacial floodwater routing during jökulhlaups; secondly, it identifies and explains the mechanisms controlling the position and morphology of supraglacial jökulhlaup outlets; and finally, it presents a conceptual model of the controls on supraglacial outbursts. Field observations are presented from two Icelandic glaciers, Skeiðarárjökull and Sólheimajökull. Video footage and aerial photographs, taken before, during and after the Skeiðarárjökull jökulhlaup and immediately after the Sólheimajökull jökulhlaup, reveal changes in floodwater routing and the positioning and morphology of outlets. Field observations confirm that glaciers cannot transmit floodwater as efficiently as previously assumed. Rapid increases in jökulhlaup discharge generate basal hydraulic pressures in excess of ice overburden. Under these circumstances, floodwater can be forced through the surface of glaciers, leading to the development of a range of supraglacial outlets. The rate of increase in hydraulic pressure strongly influences the type of supraglacial outlet that can develop. Steady increases in basal hydraulic pressure can retro‐feed pre‐existing englacial drainage, whereas transient increases in pressure can generate hydraulic fracturing. The position and morphology of supraglacial outlets provide important controls on the spatial and temporal impact of flooding. The development of supraglacial jökulhlaup outlets provides a new mechanism for rapid englacial debris entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
A detailed structural glaciological study carried out on Kvíárjökull in SE Iceland reveals that recent flow within this maritime glacier is concentrated within a narrow corridor located along its central axis. This active corridor is responsible for feeding ice from the accumulation zone on the south‐eastern side of Öræfajökull to the lower reaches of the glacier and resulted in a c. 200 m advance during the winter of 2013–2014 and the formation of a push‐moraine. The corridor comprises a series of lobes linked by a laterally continuous zone of highly fractured ice characterised by prominent flow‐parallel crevasses, separated by shear zones. The lobes form highly crevassed topographic highs on the glacier surface and occur immediately down‐ice of marked constrictions caused by prominent bedrock outcrops located on the northern side of the glacier. Close to the frontal margin of Kvíárjökull, the southern side of the glacier is relatively smooth and pock‐marked by a number of large moulins. The boundary between this slow moving ice and the active corridor is marked by a number of ice flow‐parallel strike‐slip faults and a prominent dextral shear zone which resulted in the clockwise rotation and dissection of an ice‐cored esker exposed on the glacier surface. It is suggested that this concentrated style of glacier flow identified within Kvíárjökull has affinities with the individual flow units which operate within pulsing or surging glaciers. © 2017 The Authors Earth Surface Processes and Landforms © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   

6.
Proglacial lakes are becoming ubiquitous at the termini of many glaciers worldwide due to continued climate warming and glacier retreat, and such lakes have important consequences for the dynamics and future stability of these glaciers. In light of this, we quantified decadal changes in glacier velocity since 1991 using satellite remote sensing for Breiðamerkurjökull, a large lake-terminating glacier in Iceland. We investigated its frontal retreat, lake area change and ice surface elevation change, combined with bed topography data, to understand its recent rapid retreat and future stability. We observed highly spatially variable velocity change from 1991 to 2015, with a substantial increase in peak velocity observed at the terminus of the lake-terminating eastern arm from ~1.00 ± 0.36 m day−1 in 1991 to 3.50 ± 0.25 m day−1 in 2015, with mean velocities remaining elevated from 2008 onwards. This is in stark comparison to the predominately land-terminating arms, which saw no discernible change in their velocity over the same period. We also observed a substantial increase in the area of the main proglacial lake (Jökulsárlón) since 1982 of ~20 km2, equating to an annual growth rate of 0.55 km2 year−1. Over the same period, the eastern arm retreated by ~3.50 km, which is significantly greater than the other arms. Such discrepancies between the different arms are due to the growth and, importantly, depth increase of Jökulsárlón, as the eastern arm has retreated into its ~300 m-deep reverse-sloping subglacial trough. We suggest that this growth in lake area, forced initially by rising air temperatures, combined with the increase in lake depth, triggered an increase in flow acceleration, leading to further rapid retreat and the initiation of a positive feedback mechanism. These findings may have important implications for how increased melt and calving forced by climate change will affect the future stability of large soft-bedded, reverse-sloped, subaqueous-terminating glaciers elsewhere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

7.
Glacier retreat leads to changes in channel pattern during deglaciation, in response to changing water, sediment and base level controls. Recent ongoing retreat at Skaftafellsjökull, Iceland (c. 50 m per year since 1998) has resulted in the formation of a sequence of river terraces, and several changes in river channel pattern. This paper compares widely used models of river channel pattern against the changes observed at Skaftafellsjökull. Doing this reveals the role of topographic forcing in determining proglacial channel pattern, whilst examining the predictive power and limitations of the various approaches to classifying river channels. Topography was found to play a large role in determining channel pattern in proglacial environments for two reasons: firstly, glacier retreat forces rivers to flow through confined moraine reaches. In these reaches, channels which theory predicts should be braided are forced to adopt a single channel. Secondly, proximal incision of proglacial rivers, accompanied by downstream aggradation, leads to changes in slope which force the river to cross channel pattern thresholds. The findings of this work indicate that in the short term, the majority of channel pattern change in proglacial rivers is due to topographic forcing, and that changes due to changing hydrology and sediment supply are initially relatively minor, although likely to increase in significance as deglaciation progresses. These findings have implications for palaeohydraulic studies, where changes in proglacial channel pattern are frequently interpreted as being due to changes in water or sediment supply. This paper shows that channel pattern can change at timescales faster than hydrological or sediment budget changes usually occur, in association with relatively minor changes in glacier mass balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In many mountain regions, large land areas with heterogeneous soils have become ice‐free with the ongoing glacier retreat. On these recently formed proglacial fields, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations that propagate into the riparian zone. This behaviour was measured on the Damma glacier forefield in central Switzerland with stage recorders in the stream and groundwater monitoring wells along four transects. In spite of the large groundwater stage variations, radon measurements in the near‐stream riparian zone indicate that there is little mixing between stream water and groundwater on daily time scales. At all four transects, including both losing and gaining reaches, the groundwater level fluctuations lagged the stream stage variations and were often damped with distance from the stream. Similar behaviours have been modelled using the diffusion equation in coastal regions influenced by tidal sea level variations. We thus tested the ability of such a model to predict groundwater level fluctuations in proglacial fields. The model reproduced several key features of the observed fluctuations at three of four locations, although discrepancies also arise due to non representative input data and model simplifications. Nevertheless, calibration of the model for the individual transects yielded realistic estimates of hydraulic diffusivities between the stream and groundwater monitoring wells. We conclude that studying diurnal groundwater fluctuations can provide important information about the subsurface hydrology of alpine watersheds dominated by glacier melt. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In the Swiss Alps, climatic changes have not only caused glacier retreat, but also likely increased sedimentation downstream of glaciers. This material either originates from below the glacier or from periglacial environments, which are exposed as glaciers retreat, and often consist of easily erodible sediment. Griesgletscher's catchment in the Swiss Alps was examined to quantify erosion in the proglacial area, possible hydrological drivers and contributions of the sub‐ and periglacial sources. Digital elevation models, created from annual aerial photographs, were subtracted to determine annual volume changes in the proglacial area from 1986 to 2014. These data show a strong increase in proglacial erosion in the decade prior to 2012, coincident with increasing proglacial area size. However, examination of the gradient between discharge and sediment evacuation, and modeled sediment transport, could suggest that the proglacial area began to stabilize and sediment supply is limited. The large influx of sediment into the proglacial reservoir, which is roughly 2.5 times greater than the amount of sediment eroded from the proglacial area, demonstrates the importance of subglacial erosion to the catchment's sediment budget. Although far more sediment originates subglacially, erosion rates in the proglacial area are over 50 times greater than the rest of the catchment. In turn, both sub‐ and periglacial processes, in addition to constraining sediment supply, must be considered for assessing future sediment dynamics as glacier area shrinks and proglacial areas grow. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
12.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper uses detailed mapping of eskers to address three questions which are important for reconstructing meltwater behaviour beneath contemporary and ancient ice masses: ‘What controls the morphology of simple and complex esker systems?’, ‘How do esker systems evolve through time?’ and ‘Are esker patterns compatible with groundwater controlled hydraulic spacing of esker tunnels?’. Esker crestlines and widths are mapped on the Breiðamerkurjökull foreland for eight time slices between 1945 and 2007, from high resolution (~50 cm) aerial photography, permitting their long‐term morphological evolution to be analysed in a high level of detail. We find that complex eskers develop where meltwater and sediment is abundant, such that sediment clogs channels, forming distributary eskers. Isolated eskers are simpler and smaller and reflect less abundant meltwater and sediment, which is unable to clog channels. Eskers may take several decades to emerge from outwash deposits containing buried ice and can increase or decrease in size when ice surrounding and underlying them melts out. It has been suggested that groundwater–channel coupling dictates the spacing between eskers at Breiðamerkurjökull. Our results do not dispute this, but suggest that the routing of sediment and meltwater through medial moraines is an additional important control on esker location and spacing. These results may be used to better understand the processes surrounding esker formation in a variety of geographical settings, enabling a more detailed understanding of the operation of meltwater drainage systems in sub‐marginal zones beneath glaciers and ice sheets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
The origin, formation and evolution of volcanic sands are less well known than the formation of the much more common quartz‐rich sand sheets. Combining active volcanism and a cold climate, Iceland is covered for about 21% of its surface by sandy areas. The sands were analyzed in detail at two sites and results reveal their diverse origins. The first site is Dyngjusandur, located north of Vatnajökull, and the second site is the Lambahraun area, located south of Langjökull. At both sites, the sand origin is determined from field observations (wind directions from ventifacts), chemical and mineralogical analyses of rocks and sands. At Dyngjusandur, the sand is dominated by glass grains, a situation typical of sand plains in Iceland. Hyaloclastite ridges presently buried beneath Vatnajökull are the dominant source of the sand, and only large size plagioclase crystals (0.5 cm) in sands seem to be derived from the lava flows. Hyaloclastite ridges were crushed by glaciers and mechanically eroded sediments were washed out by melt‐water onto flood plains. The sand chemical composition is spatially homogeneous and similar to the average composition of neighboring sub‐aerial lava flows, reflecting efficient mixing of distinct sources below the glacier. The presence of sand north of Dyngjujökull can be taken as a way to explore the average chemical composition of non‐exposed volcanic material beneath the glacier. In the case of Lambahraun, prevailing winds indicate several potential sources of sand at the north of the sand sheet. Comparison of chemical and mineralogical analyses of sands and rock samples helped to refine the exact origin. In contrast with the first site, the sand is dominated by crystals and is chemically consistent with a mixture of material derived from the lava flows of Eldborgir and Skersli shield volcanoes. Analysis of the contact between the lava flows and the glacier reveals that basaltic sand grains formed as the result of recent advances of the glacier abrading the rocks. The direct interaction of glacial and fluvio‐glacial activity with basaltic plains appears to be necessary to produce a large amount of sands in a relatively short period of time (<4000 years). This site appears to be an excellent natural laboratory for further studies concerning the sand evolution and physical sorting processes in basaltic material, which have important implications for understanding aeolian processes on Mars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Proglacial stream development was studied in coastal British Columbia and Washington, focusing on reaches exposed by post‐Little Ice Age (LIA) glacier retreat, to address three principal questions: (i) Does the legacy of LIA glaciation influence the evolution of channel morphology? (ii) How long does it take for riparian forest to establish following glacier retreat? (iii) Can newly exposed proglacial streams provide suitable fish habitat? Channel morphologies were identified by field surveys of 69 reaches in 10 catchments. Riparian forest development and potential fish habitat were characterized in those reaches and an additional 22 catchments using GIS analysis. The landscape template imposed by the Quaternary glaciation appears to override most of the modern effects of the LIA in controlling channel‐reach morphology. Binary logistic regression analysis identified elevation and time since deglaciation as primary controls on the presence of riparian forest. At higher elevations, establishment of morphologically functional riparian forest could take several centuries, prolonged by channel instability associated with post‐LIA sediment inputs. Of the recently deglaciated streams included in this analysis, the majority (86%) of the total length was of suitable gradient for fish and could be accessed either by downstream populations or from adjacent lakes. Predicted maximum weekly average stream temperature (MWAT) indicated that the post‐LIA study streams were thermally suitable for cold‐water fish. A future scenario of glacier loss would cause a 14% decline in accessible cold‐water thermal habitat in post‐LIA streams. Decreased summer flows due to glacier retreat could further limit usable habitat by reducing stream depths and wetted perimeters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Proglacial lakes are effective sediment traps but their impact on the reliability of downstream sediment records to reconstruct glacier variability remains unclear. Here, we investigate the sedimentary signature of the recent recession of Steffen Glacier (Chilean Patagonia, 47°S) in downstream fjord sediments, with a focus on identifying the trapping (decreased downstream sediment yield) and filtering (removal of coarse particles) effectiveness of a growing intermediate proglacial lake. Four sediment cores were collected along a 14 km longitudinal transect in Steffen Fjord and the sediment physical and chemical properties were compared with aerial imagery at high temporal resolution. The caesium-137 (137Cs) chronology of the most distal core and sediment trap data suggest that sediment accumulation in the fjord remained relatively stable through time, despite the accelerating glacier recession and the growth of Steffen proglacial lake. This is in contrast with many studies that indicate a decrease in sediment yield during proglacial lake expansion. It implies that the increase in sediment export due to accelerating meltwater production may be balanced by the sediment trapping effect of the growing proglacial lake. The fjord sediments show a slight fining upward accompanied by a marked decrease in flood-induced grain-size peaks, most likely due to the increasing filtering and dampening effect of the expanding proglacial lake. Our findings show that the filtering effect of the proglacial lake reached a threshold in 1985, when the lake attained an area of 2.02 km2. The additional 5 km of glacier recession during the following 32 years did not have any significant impact on downstream sedimentation. This study confirms that proglacial lakes act as sediment traps but it indicates that (1) the trapping effect can be outpaced by accelerating glacier recession and (2) the filtering effect becomes stable once the lake attains a certain critical size. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
19.
《Journal of Geodynamics》2007,43(1):153-169
A Bouguer anomaly map is presented of southern central Iceland, including the western part of Vatnajökull and adjacent areas. A complete Bouguer reduction for both ice surface and bedrock topography is carried out for the glaciated regions. Parts of the volcanic systems of Vonarskarð-Hágöngur, Bárðarbunga-Veiðivötn, Grímsvötn-Laki, and to a lesser extent Kverkfjöll, show up as distinct features on the gravity map. The large central volcanoes with calderas: Vonarskarð, Bárðarbunga, Kverkfjöll and Grímsvötn, are associated with 15–20 mGal gravity highs caused by high density bodies in the uppermost 5 km of the crust. Each of these bodies is thought to be composed of several hundred km3 of gabbros that have probably accumulated over the lifetime of the volcano. The Skaftárkatlar subglacial geothermal areas are not associated with major anomalous bodies in the upper crust. The central volcanoes of Vonarskarð and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna. None of the smaller of the two volcanoes sharing a system (Hágöngur, Hamarinn and Þórðarhyrna) is associated with distinct gravity anomalies and clear caldera structures have not been identified. However, ridges in the gravity field extend between each pair of central volcanoes, indicating that they are connected by dense dyke swarms. This suggests that when two central volcanoes share the same system, one becomes the main pathway for magma, forming a long-lived crustal magma chamber, a caldera and large volume basic intrusive bodies in the upper crust. Short residence times of magma in the crust beneath these centres favour essentially basaltic volcanism. In the case of the second, auxillary central volcano, magma supply is limited and occurs only sporadically. This setting may lead to longer residence times of magma in the smaller central volcanoes, favouring evolution of the magma and occasional eruption of rhyolites. The eastern margin of the Eastern Volcanic Zone is marked by a NE–SW lineation in the gravity field, probably caused by accumulation of low density, subglacially erupted volcanics within the volcanic zone. This lineation lies 5–10 km to the east of Grímsvötn.  相似文献   

20.
青藏高原上分布着大量的大陆性冰川,其对区域及全球气候变化响应极其敏感.工业革命以来,随着全球升温速率加快(特别是北半球),青藏高原部分地区的冰川在近百年显著退缩.冰前湖沉积物是最直接的冰川变化记录载体之一,但其沉积速率如何响应冰川及气候变化,能否反演冰川进退过程却知之甚少.本文依据~(210)Pb和~(137)Cs限定藏南冰前湖枪勇错QY5沉积岩芯的年龄,计算出不同深度沉积物的沉积速率,且与前人(QY-3)的沉积速率进行对比,揭示了近百年来枪勇错流域冰川变化历史及其与气温之间的关系.结果表明,枪勇错QY5近百年来的平均沉积速率为0.21 cm/a,比湖心(QY-3)快2倍左右,但两者的变化基本同步,高沉积速率对应温度上升期,是冰川退缩的直接响应:(1)1900—1960年,枪勇错沉积速率整体增加且变幅较大,与1890—1950年之间西藏温度波动式升高相对应,反映枪勇冰川总体处于退缩状态;(2)1960—1985年,沉积速率低且变幅较小,同期气温下降,枪勇冰川退缩程度相对较低且保持平稳;(3)1985年以来,枪勇错沉积速率呈上升趋势,是全球增暖下冰川显著退缩的直接响应.在短时间尺度内冰前湖沉积速率所揭示的枪勇冰川变化主要受控于温度,降水量对冰川变化的影响较小,但冰川对温度变化的响应滞后5~10 a.由于全球变暖和冰川对温度响应的滞后,在未来几十年高原冰川的融化速率可能会加快,亚洲水塔将面临着新的挑战.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号