首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   12篇
  国内免费   2篇
测绘学   3篇
大气科学   29篇
地球物理   77篇
地质学   120篇
海洋学   68篇
天文学   91篇
自然地理   25篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   9篇
  2013年   26篇
  2012年   14篇
  2011年   20篇
  2010年   17篇
  2009年   28篇
  2008年   22篇
  2007年   16篇
  2006年   23篇
  2005年   20篇
  2004年   17篇
  2003年   7篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   9篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   8篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有413条查询结果,搜索用时 46 毫秒
1.
Natural Resources Research - Carbon capture and storage is part of Canada’s climate change action plan to reduce greenhouse gas emissions. The Containment and Monitoring Institute Field...  相似文献   
2.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
3.
This work studied the anaerobic digestion of brown juice, a liquid residual stream generated from biomass fractionation in a green biorefinery. Biomethane potential batch tests and inhibition studies of brown juice were performed during continuous processing in an upflow anaerobic sludge blanket reactor. Prolongation of the lag phase in the batch tests with increasing substrate/inoculum ratio suggested initial inhibition, which was, however, overcome by adaptation. This was indicated by high final methane yields, which were close to the theoretical maximum of up to 500 L-CH4 kg-VS?1, achieved after 15 days for most of the set-ups. Reactor operation at the organic loading rate of 13.9 g-COD L?1 day?1 and hydraulic retention time of 3 days revealed methane yields of 202 L-CH4 kg-COD?1 (307 L-CH4 kg-VS?1). Particle size analysis of the granules used in the reactor showed disintegration of the larger granules.  相似文献   
4.
The petrology and mineralogy of shock melt veins in the L6 ordinary chondrite host of Villalbeto de la Peña, a highly shocked, L chondrite polymict breccia, have been investigated in detail using scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electron probe microanalysis. Entrained olivine, enstatite, diopside, and plagioclase are transformed into ringwoodite, low‐Ca majorite, high‐Ca majorite, and an assemblage of jadeite‐lingunite, respectively, in several shock melt veins and pockets. We have focused on the shock behavior of diopside in a particularly large shock melt vein (10 mm long and up to 4 mm wide) in order to provide additional insights into its high‐pressure polymorphic phase transformation mechanisms. We report the first evidence of diopside undergoing shock‐induced melting, and the occurrence of natural Ca‐majorite formed by solid‐state transformation from diopside. Magnesiowüstite has also been found as veins injected into diopside in the form of nanocrystalline grains that crystallized from a melt and also occurs interstitially between majorite‐pyrope grains in the melt‐vein matrix. In addition, we have observed compositional zoning in majorite‐pyrope grains in the matrix of the shock‐melt vein, which has not been described previously in any shocked meteorite. Collectively, all these different lines of evidence are suggestive of a major shock event with high cooling rates. The minimum peak shock conditions are difficult to constrain, because of the uncertainties in applying experimentally determined high‐pressure phase equilibria to complex natural systems. However, our results suggest that conditions between 16 and 28 GPa and 2000–2200 °C were reached.  相似文献   
5.
This study presents the results of the 2013 Ibiza (Western Mediterranean) calibration campaign of Jason-2 and SARAL altimeters. It took place from 14 to 16 September 2013 and comprised two phases: the calibration of the GNSS (Global Navigation Satellite System) buoys to estimate the antenna height of each of them and the absolute calibration to estimate the altimeter bias (i.e., the difference of sea level measured by radar altimetry and GNSS). The first one was achieved in the Ibiza harbor at a close vicinity of the Ibiza tide gauge and the second one was performed at ~ 40 km at the northwest of Ibiza Island at a crossover point of Jason-2 and SARAL nominal groundtracks. Five buoys were used to delineate the crossover region and their measurements interpolated at the exact location of each overflight. The overflights occurred two consecutive days: 15 and 16 September 2013 for Jason-2 and SARAL, respectively. The GNSS data were processed using precise point positioning technique. The biases found are of (?0.1 ± 0.9) and (?3.1 ± 1.5) cm for Jason-2 and SARAL, respectively.  相似文献   
6.
The quantity and the source of organic matter preserved in the Recent turbiditic channel-levees systems around 4000 m-depth off the Congo River were determined using bulk geochemical approaches (Rock-Eval, elemental and isotopic analyses) as well as molecular and optical analyses on selected samples. These mud-rich sediments contain high amount of organic matter (3% Corg on average), the origin of which is a mixture of terrestrial higher-plant debris and deeply oxidized phytoplanktonic material. Although the relative contribution of continental source versus marine source of the organic matter cannot be precisely quantified, the continental fraction appears significant (at least 70–80%) especially for such depths and distances from the coast. The organic matter distribution appears very homogeneous at different scales, from the single turbiditic event to the entire levee, and changes in accumulation rates have a little impact on the quantity and quality of preserved organic matter.  相似文献   
7.
Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy’s Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2–29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt.%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U–Na–C–O–P ± H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt.% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.  相似文献   
8.
International Journal of Earth Sciences - Four imbricated mafic to felsic plutons of Variscan age from Morocco have been investigated for their cooling history and geochemical interactions with...  相似文献   
9.
Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.  相似文献   
10.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号