首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents detailed geomorphological and sedimentological investigations of small recessional moraines at Fjallsjökull, an active temperate outlet of Öræfajökull, southeast Iceland. The moraines are characterized by striking sawtooth or hairpin planforms, which are locally superimposed, giving rise to a complex spatial pattern. We recognize two distinct populations of moraines, namely a group of relatively prominent moraine ridges (mean height ~1.2 m) and a group of comparatively low-relief moraines (mean height ~0.4 m). These two groups often occur in sets/systems, comprising one pronounced outer ridge and several inset smaller moraines. Using a representative subsample of the moraines, we establish that they form by either (i) submarginal deformation and squeezing of subglacial till or (ii) pushing of extruded tills. Locally, proglacial (glaciofluvial) sediments are also incorporated within the moraines during pushing. For the first time, to our knowledge, we demonstrate categorically that these moraines formed sub-annually using repeat uncrewed aerial vehicle (UAV) imagery. We present a conceptual model for sub-annual moraine formation at Fjallsjökull that proposes the sawtooth moraine sequence comprises (i) sets of small squeeze moraines formed during melt-driven squeeze events and (ii) larger push moraines formed during winter re-advances. We suggest the development of this process-form regime is linked to a combination of elevated temperatures, high surface meltwater fluxes to the bed and emerging basal topography (a depositional overdeepening). These factors result in highly saturated subglacial sediments and high porewater pressures, which induces submarginal deformation and ice-marginal squeezing during the melt season. Strong glacier recession during the summer, driven by elevated temperatures, allows several squeeze moraines to be emplaced. This process-form regime may be characteristic of active temperate glaciers receding into overdeepenings during phases of elevated temperatures, especially where their englacial drainage systems allow efficient transfer of surface meltwater to the glacier bed near the snout margin. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

6.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye‐tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid‐summer, water pressures are closer to half‐ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ~210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction between drumlins and overriding glacier ice is not well studied, largely due to the difficulty of identifying and accessing suitable active subglacial environments. The surge-type glacier Múlajökull, in central Iceland, overlies a known field of actively forming drumlins and therefore provides a rare opportunity to investigate the englacial structures that have developed in association with ice flow over the subglacial drumlins. In this study detailed ground-penetrating radar surveys are combined with field observations to identify clear sets of up-glacier and down-glacier dipping fractures at Múlajökull's margin. These are interpreted as conjugate shear planes or P- and R-type Reidel shears that developed and filled with saturated sediment derived from the glacier bed, during a previous surge. The fracture sets exhibit focused spatial distributions that are influenced by the subglacial topography. In particular, down-glacier dipping fractures are strongly focused over drumlin stoss slopes. These fractures, although well developed at depth, were mostly unable to transmit basal water and sediment up to the glacier surface during the surge cycle. In contrast, up-glacier dipping fractures formed over drumlin lee sides and in more gently sloping swales, and more frequently connected to the glacier surface, providing a pathway for the evacuation of basal water and water-saturated sediment. The study suggests that the subglacial drumlins under Múlajökull's margin have influenced the nature and distribution of englacial fractures, which could potentially contribute to spatial variations in basal water pressure during a surge. BGS © UKRI 2018  相似文献   

12.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Observations from the jökulhlaup from Grímsvötn in Vatnajökull, south-eastern Iceland, in 1996 indicate that the jökulhlaup was initiated by the movement of a localised pressure wave that travelled 50 km in 10 h from Grimsvötn to the terminus, forming a subglacial pathway along the glacier bed. Shortly after this wave reached the terminus, the jökulhlaup was flowing at a high discharge through a tunnel that would have needed much longer time to form by ice melting as assumed in existing theories of jökulhlaups. Frozen sediments formed in crevasses and frazil ice on the surface of the flood waters indicate the flow of supercooled water in the terminus region, demonstrating that the rate of heat transfer from subglacial flood water to the overlying ice is greatly underestimated in current theories.  相似文献   

14.
ABSTRACT

The temporal variations in electrical conductivity and the stable isotopes of water, δD and δ18O, were examined at Chhota Shigri Glacier, India, to understand water sources and flow paths to discharge. Discharge is highly influenced by supraglacially derived meltwater during peak ablation, and subglacial meltwaters are more prominent at the end of the melt season. The slope of the best fit linear regression line for δD versus δ18O, for both supraglacial and runoff water, is lower than that for precipitation (snow and rain) and surface ice, indicating strong isotopic fractionation associated with the melting processes. The slope of the local meteoric water line (LMWL) is close to that of the global meteoric water line (GMWL), reflecting that the moisture source is predominantly oceanic. The d-excess variation in rainwater confirms that the southwest monsoon is the main contributor during summer while the remainder including winter is mostly influenced by westerlies.  相似文献   

15.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the thermodynamic and fluid dynamic processes that occur during subglacial effusive eruptions. Subglacial eruptions typically generate catastrophic floods (jökulhlaups) due to melting of ice by lava and generation of a large water cavity. We consider the heat transfer from basaltic and rhyolitic lava eruptions to the ice for typical ranges of magma discharge and geometry of subglacial lavas in Iceland. Our analysis shows that the heat flux out of cooling lava is large enough to sustain vigorous natural convection in the surrounding meltwater. In subglacial eruptions the temperature difference driving convection is in the range 10–100??°C. Average temperature of the meltwater must exceed 4??°C and is usually substantially greater. We calculate melting rates of the walls of the ice cavity in the range 1–40?m/day, indicating that large subglacial lakes can form rapidly as observed in the 1918 eruption of Katla and the 1996 eruption of Gjálp fissure in Vatnajökull. The volume changes associated with subglacial eruptions can cause large pressure changes in the developing ice cavity. These pressure changes can be much larger than those associated with variation of bedrock and glacier surface topography. Previous models of water-cavity stability based on hydrostatic and equilibrium conditions may not be applicable to water cavities produced rapidly in volcanic eruptions. Energy released by cooling of basaltic lava at the temperature of 1200??°C results in a volume deficiency due to volume difference between ice and water, provided that heat exchange efficiency is greater than approximately 80%. A negative pressure change inhibits escape of water, allowing large cavities to build up. Rhyolitic eruptions and basaltic eruptions, with less than approximately 80% heat exchange efficiency, cause positive pressure changes promoting continual escape of meltwater. The pressure changes in the water cavity can cause surface deformation of the ice. Laboratory experiments were carried out to investigate the development of a water cavity by melting ice from a finite source area at its base. The results confirm that the water cavity develops by convective heat transfer.  相似文献   

19.
The precipitation process of subglacial chemical deposits is closely related to the subglacial hydrologic processes and the physical, chemical reactions on the ice-bedrock interfaces. Thus the chemical deposits can serve as a nice proxy for the study of subglacial envi- ronment and a great deal of researches have been done on them during the 1970s and 1980s[1─7]. The alpine glaciers in Northwest China develop in the very continental environment with a comparatively slow subglacial process, du…  相似文献   

20.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号