首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure which involves a non‐linear eigenvalue problem and is based on the substructure method is proposed for the free‐vibration analysis of a soil–structure system. In this procedure, the structure is modelled by the standard finite element method, while the unbounded soil is modelled by the scaled boundary finite element method. The fundamental frequency, and the corresponding radiation damping ratio as well as the modal shape are obtained by using inverse iteration. The free vibration of a dam–foundation system, a hemispherical cavity and a hemispherical deposit are analysed in detail. The numerical results are compared with available results and are also verified by the Fourier transform of the impulsive response calculated in the time domain by the three‐dimensional soil–structure–wave interaction analysis procedure proposed in our previous paper. The fundamental frequency obtained by the present procedure is very close to that obtained by Touhei and Ohmachi, but the damping ratio and the imaginary part of modal shape are significantly different due to the different definition of damping ratio. This study shows that although the classical mode‐superposition method is not applicable to a soil–structure system due to the frequency dependence of the radiation damping, it is still of interest in earthquake engineering to evaluate the fundamental frequency and the corresponding radiation damping ratio of the soil–structure system. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

3.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The scaled boundary finite‐element method is a powerful semi‐analytical computational procedure to calculate the dynamic stiffness of the unbounded soil at the structure–soil interface. This permits the analysis of dynamic soil–structure interaction using the substructure method. The response in the neighbouring soil can also be determined analytically. The method is extended to calculate numerically the response throughout the unbounded soil including the far field. The three‐dimensional vector‐wave equation of elasto‐dynamics is addressed. The radiation condition at infinity is satisfied exactly. By solving an eigenvalue problem, the high‐frequency limit of the dynamic stiffness is constructed to be positive definite. However, a direct determination using impedances is also possible. Solving two first‐order ordinary differential equations numerically permits the radiation condition and the boundary condition of the structure–soil interface to be satisfied sequentially, leading to the displacements in the unbounded soil. A generalization to viscoelastic material using the correspondence principle is straightforward. Alternatively, the displacements can also be calculated analytically in the far field. Good agreement of displacements along the free surface and below a prism foundation embedded in a half‐space with the results of the boundary‐element method is observed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A new numerical procedure is proposed for the analysis of three-dimensional dynamic soil–structure interaction in the time domain. In this study, the soil is modelled as a linear elastic solid, however, the methods developed can be adapted to include the effects of soil non-linearities and hysteretic damping in the soil. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite-element method, is used and the structure is modelled by 8–21 variable-number-node three-dimensional isoparametric or subparametric hexahedral curvilinear elements. Approximations in both time and space, which lead to efficient schemes for calculation of the acceleration unit-impulse response matrix, are proposed for the scaled boundary finite-element method resulting in significant reduction in computational effort with little loss of accuracy. The approximations also lead to a very efficient scheme for evaluation of convolution integrals in the calculation of soil–structure interaction forces. The approximations proposed in this paper are also applicable to the boundary element method. These approximations result in an improvement over current methods. A three-dimensional Dynamic Soil–Structure Interaction Analysis program (DSSIA-3D) is developed, and seismic excitations (S-waves, P-waves, and surface waves) and externally applied transient loadings can be considered in analysis. The computer program developed can be used in the analysis of three-dimensional dynamic soil–structure interaction as well as in the analysis of wave scattering and diffraction by three-dimensional surface irregularities. The scattering and diffraction of seismic waves (P-, S-, and Rayleigh waves) by various three-dimensional surface irregularities are studied in detail, and the numerical results obtained are in good agreement with those given by other authors. Numerical studies show that the new procedure is suitable and very efficient for problems which involve low frequencies of interest for earthquake engineering. Copyright © 1999 John Wiley & Sons Ltd  相似文献   

7.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

8.
Seismic performance and dynamic response of bridge–embankments during strong or moderate ground excitations are investigated through finite element (FE) modelling and detailed dynamic analysis. Previous research studies have established that bridge–embankments exhibit increasingly flexible performance under high‐shear deformation levels and that soil displacements at bridge abutment supports may be significant particularly in the transverse direction. The 2D equation of motion is solved for the embankment, in order to evaluate the dynamic characteristics and to describe explicitly the seismic performance and dynamic response under transverse excitations accounting for soil nonlinearities, soil–structure interaction and imposed boundary conditions (BCs). Using the proposed model, equivalent elastic analysis was performed so as to evaluate the dynamic response of approach embankments while accounting for soil–structure interaction. The analytical procedures were applied in the case of a well‐documented bridge with monolithic supports (Painter Street Overcrossing, PSO) which had been instrumented and embankment participation was identified from its response records after the 1971 San Fernando earthquake. The dynamic characteristics and dynamic response of the PSO embankments were evaluated for alternative BCs accounting for soil–structure interaction. Explicit expressions for the evaluation of the critical embankment length Lc are provided in order to quantify soil contribution to the overall bridge system under strong intensity ground excitations. The dynamic response of the entire bridge system (deck–abutments–embankments) was also evaluated through simplified models that considered soil–structure interaction. Results obtained from this analysis are correlated with those of detailed 3D FE models and field data with good agreement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This study developed a finite element method with the effect of soil–fluid–structure interaction to calculate bridge natural frequencies. The finite element model includes bridge girders, piers, foundations, soil, and water. The effective mass above the soil surface was then used to find the first natural frequency in each direction. A field experiment was performed to validate that the natural frequencies calculated using the proposed finite element method had acceptable accuracy. The calculated natural frequencies with the fluid–structure interaction effect are always smaller than those without this effect. However, the frequency change due to the fluid effect is not obvious, so using the soil–structure interaction model is accurate enough in the bridge natural frequency analysis. The trend of the frequency decreases with the increase of the scour depth, but the curve is not smooth because of non-uniform foundation sections and layered soils. However, when the scour depth is such that pile cap is exposed, the changes in natural frequency with the scour depth are more obvious, and this is useful for measurement of the depth using bridge natural frequencies.  相似文献   

10.
A substructuring method has been implemented for the seismic analysis of bridge piers founded on vertical piles and pile groups in multi-layered soil. The method reproduces semi-analytically both the kinematic and inertial soil–structure interaction, in a simple realistic way. Vertical S-wave propagation and the pile-to-pile interplay are treated with sufficient rigor, within the realm of equivalent-linear soil behaviour, while a variety of support conditions of the bridge deck on the pier can be studied with the method. Analyses are performed in both frequency and time domains, with the excitation specified at the surface of the outcropping (‘elastic’) rock. A parameter study explores the role of soil–structure interaction by elucidating, for typical bridge piers founded on soft soil, the key phenomena and parameters associated with the interplay between seismic excitation, soil profile, pile–foundation, and superstructure. Results illustrate the potential errors from ignoring: (i) the radiation damping generated from the oscillating piles, and (ii) the rotational component of motion at the head of the single pile or the pile-group cap. Results are obtained for accelerations of bridge deck and foundation points, as well as for bending moments along the piles. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A general procedure is presented to study the dynamic soil–structure interaction effects on the response of long-span suspension and cable-stayed bridges subjected to spatially varying ground motion at the supporting foundations. The foundation system is represented by multiple embedded cassion foundations and the frequency-dependent impedance matrix for the multiple foundations system takes into account also the cross-interaction among adjacent foundations through the soil. To illustrate the potential implementation of the analysis, a numerical example is presented in which the dynamic response of the Vincent–Thomas suspension bridge (Los Angeles, CA) subjected to the 1987 Whittier earthquake is investigated. Although both kinematic and inertial effects are included in the general procedure, only the kinematic effects of the soil–structure interaction are considered in the analysis of the test case. The results show the importance of the kinematic soil–foundation interaction on the structural response. These effects are related to the type, i.e. SH-, SV-, P- or Rayleigh waves and to the inclination of the seismic wave excitation. Moreover, rocking components of the foundation motion are emphasized by the embedment of the foundation system and greatly alter the structural response.  相似文献   

13.
A continuum theory for an improved characterization of dynamic soil–structure interaction in the framework of three‐dimensional elastodynamics is presented. Effective in demonstrating the importance of integrating free‐field and near‐field effects under general soil and foundation conditions, a compact two‐zone delineation of the soil medium is proposed as a quintessential mechanics perspective for this class of problems. Sufficient to deliver a practical resolution of some perennial analytical and experimental conflicts, a fundamental formulation commensurate to a gradated unification of the homogenization approach and any sole free‐field inhomogeneous representation is developed and implemented computationally. Specialized to the problem of a rigid circular footing on sand, a nominal set of dynamic contact stress distributions and related impedance functions by the dual‐zone theory is included for theoretical and engineering evaluation. Through its comparison with benchmark analytical solutions and relevant physical measurements, the usage of the underlying conceptual platform as an advanced yet practical foundation for general dynamic soil–structure interaction is illustrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Interaction of bridge structures with the adjacent embankment fills and pile foundations is generally responsible for response modification of the system to strong ground excitations, to a degree that depends on soil compliance, support conditions, and soil mass mobilized in dynamic response. This paper presents a general modeling and assessment procedure specifically targeted for simulation of the dynamic response of short bridges such as highway overcrossings, where the embankment soil–structure interaction is the most prevalent. From previous studies it has been shown that in this type of interaction, seismic displacement demands are magnified in the critical bridge components such as the central piers. This issue is of particular relevance not only in new design but also in the assessment of the existing infrastructure. Among a wide range of issues relevant to soil–structure interaction, typical highway overcrossings that have flexible abutments supported on earth embankments were investigated extensively in the paper. Simulation procedures are proposed for consideration of bridge‐embankment interaction effects in practical analysis of these structures for estimation of their seismic performance. Results are extrapolated after extensive parametric studies and are used to extract ready‐to‐use, general, and parameterized capacity curves for a wide range of possible material properties and geometric characteristics of the bridge‐embankment assembly. Using two instrumented highway overpasses as benchmark examples, the capacity curves estimated using the proposed practical procedures are correlated successfully with the results of explicit incremental dynamic analysis, verifying the applicability of the simple tools developed herein, in seismic assessment of existing short bridges. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic design of extended pile‐shafts requires a careful consideration of the influence of the surrounding soil on the overall response of the soil–pile system. In this paper, a procedure that incorporates soil properties into the process is developed for preliminary seismic design of extended pile‐shafts. The method follows the well‐accepted approach of using a force reduction factor to determine the lateral strength of the structure. The procedure involves an iterative process to arrive at the required amount of longitudinal reinforcement. Other outcomes of the procedure include the appropriate lateral stiffness and strength, as well as an estimation of the local curvature demand and ultimate drift ratio that can be used to ensure a satisfactory lateral response. The design procedure is capable of providing reliable results for a practical range of structural and soil properties. The versatility of the procedure is illustrated using two numerical examples of extended pile‐shafts constructed in different soil sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A simple model for the seismic response of a one-storey structure subjected to active control in the presence of soil–structure interaction effects is presented. The approach is based on the successive use of equivalent 1-DOF oscillators which account for the effects of control and soil–structure interaction. Simple expressions for these oscillators based on exact analytical solutions of the control equations and approximate solutions of the interaction equations are presented. The study includes an evaluation of the effects of soil–structure interaction on the seismic response of actively controlled structures in which the control gains have been determined with and without inclusion of soil–structure interaction effects. A simple procedure to include the interaction effects on the control gains is also presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Based on the theory of dynamic wheel–rail interactions, a dynamic model of coupled train–bridge system subjected to earthquakes is established, in which the non‐uniform characteristics of the seismic wave input from different foundations are considered. The bridge model is based on the modal comprehension analysis technique. Each vehicle is modelled with 31 degrees of freedom. The seismic loads are imposed on the bridge by using the influence matrix and exerted on the vehicles through the dynamic wheel–rail interaction relationships. The normal wheel–rail interaction is tackled by using the Hertzian contact theory, and the tangent wheel–rail interaction by the Kalker linear theory and the Shen–Hedrick–Elkins theory. A computer code is developed. A case study is performed to a continuous bridge on the planned Beijing–Shanghai high‐speed railway in China. Through input of typical seismic waves with different propagation velocities to the train–bridge system, the histories of the train running through the bridge are simulated and the dynamic responses of the bridge and the vehicles are calculated. The influences of train speed and seismic wave propagation velocity on the dynamic responses of the bridge–vehicle system are studied. The critical train speeds are proposed for running safety on high‐speed railway bridges under earthquakes of various intensities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Bridge performance under earthquake loading can be significantly influenced by the interaction between the structure and the supporting soil. Even though the frequency dependence of the interaction mentioned in this study has long been documented, the simplifying assumption that the dynamic stiffness is dominated by the mean or predominant excitation frequency is still commonly made, primarily as a result of the associated numerical difficulties when the analysis has to be performed in the time domain. This study makes use of the advanced lumped parameter models recently developed 1 in order to quantify the impact of the assumption on the predicted fragility of bridges mentioned in this study. This is achieved by comparing the predicted vulnerability for the case of a reference, well studied, actual bridge using both conventional, frequency‐independent, Kelvin–Voigt models and the aforementioned lumped parameter formulation. Analysis results demonstrate that the more refined consideration of frequency dependence of soil–structure interaction at the piers and the abutments of a bridge not only leads to different probabilities of failure for given intensity measures but also leads to different hierarchy and distribution of damage within the structure for the same set of earthquake ground motions even if the overall probability of exceeding a given damage state is the same. The paper concludes with the comparative assessment of the effect for different soil conditions, foundation configurations, and ground motion characteristics mentioned in this study along with the relevant analysis and design recommendations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, several new optimum loading patterns have been proposed by researchers for fixed‐base systems while their adequacy for soil–structure systems has not been evaluated yet. Through intensive dynamic analyses of multistory shear‐building models with soil–structure interaction subjected to a group of 21 artificial earthquakes adjusted to soft soil design spectrum, the adequacy of these optimum patterns is investigated. It is concluded that using these patterns the structures generally achieve near optimum performance in some range of periods. However, their efficiency reduces as soil flexibility increases especially when soil–structure interaction effects are significant. In the present paper, using the uniform distribution of damage over the height of structures, as the criterion, an optimization algorithm for seismic design of elastic soil–structure systems is developed. The effects of fundamental period, number of stories, earthquake excitation, soil flexibility, building aspect ratio, damping ratio and damping model on optimum distribution pattern are investigated. On the basis of 30,240 optimum load patterns derived from numerical simulations and nonlinear statistical regression analyses, a new lateral load pattern for elastic soil–structure systems is proposed. It is a function of the fundamental period of the structure, soil flexibility and structural slenderness ratio. It is shown that the seismic performance of such a structure is superior to those designed by code‐compliant or recently proposed patterns by researchers for fixed‐base structures. Using the proposed load pattern in this study, the designed structures experience up to 40% less structural weight as compared with the code‐compliant or optimum patterns developed based on fixed‐base structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A number of methods have been proposed that utilize the time‐domain transformations of frequency‐dependent dynamic impedance functions to perform a time‐history analysis. Though these methods have been available in literature for a number of years, the methods exhibit stability issues depending on how the model parameters are calibrated. In this study, a novel method is proposed with which the stability of a numerical integration scheme combined with time‐domain representation of a frequency‐dependent dynamic impedance function can be evaluated. The method is verified with three independent recursive parameter models. The proposed method is expected to be a useful tool in evaluating the potential stability issue of a time‐domain analysis before running a full‐fledged nonlinear time‐domain analysis of a soil–structure system in which the dynamic impedance of a soil–foundation system is represented with a recursive parameter model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号