首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
本文用强功率四圆单晶衍射仪精确地修正了独居石和磷钇矿的晶体结构。独居石[Monazite-(Ce),CePO4]属单斜晶系,a=6.7843(17),b=6.9891(12),c=6.4592(10),β=103.626(16)°,Z=4,空间群为P21/n。使用1106个[F≥3σ(F)]的独立衍射点,经多轮最小二乘法修正后,最终获得偏离因子R=0.060。独居石的结构由孤立的[PO4]四面体构成,Ce位于[PO4]四面体包围之中,Ce的配位数为9,独居石的Ce—O平均键长为2.552,P—O平均键长为1.528。磷钇矿(Xenotime,YPO4)属四方晶系,其晶格常数为:a=6.8791(24),c=6.0147(19),Z=4,空间群为I4I/amd(No.141)。使用142个[F≥3σ(F)]的独立衍射点,经多轮最小二乘法修正后,最终获得偏离因子R为0.0483。磷和氧形成四面体配位,其P—O平均键长为1.543;稀土钇与氧原子相连构成八次配位,其Y—O平均键长为2.333。  相似文献   

2.
肖序刚 《矿物学报》1998,18(4):496-508
本文提出一个既具有五次旋转的20面体点群(Ih,5m3)也显示由5个共轭立方格子表征的三维平移周期性的几何构型──正12面体框架构型(RDFC)所对20面体相原子结构进行了诠释,同时也诠释了1981年发现的20面体相(Ⅰ相)的电子衍射图(EDPs)和高分辨电子显微象。  相似文献   

3.
章培春  彭勃  赵金忠  王鑫  贺吉  张爱  双龙 《地球科学》2022,47(8):2889-2901
大兴安岭南段西坡发育有大量晚侏罗世-早白垩世花岗岩,深入讨论岩石成因对该地区中生代地球动力学背景及其构造演化的研究具有重要地质意义.报道了小乌兰沟正长花岗岩的锆石LA?ICP?MS U?Pb年龄,全岩地球化学及锆石Hf同位素数据.小乌兰沟正长花岗岩的锆石206Pb/238U加权平均年龄为139.4±0.7 Ma,属早白垩世. 样品主量元素表现为富硅、富钾的高钾钙碱性系列岩石,A/CNK值介于1.00~1.11之间,属弱过铝质. 微量元素富集Rb、Th、U等大离子亲石元素(LILE)和轻稀土元素(LREE),强烈亏损Ba、Sr、P、Ti等高场强元素(HFSE),Eu负异常明显(δEu=0.007~0.009),Zr+Nb+Ce+Y值基本小于350×10-6,含磁铁矿,未见原生白云母和碱性暗色矿物,属高分异I型花岗岩. 小乌兰沟正长花岗岩εHf(t)值介于+5.5~+8.9之间,Hf同位素模式年龄tDM2变化于700~947 Ma之间.结合区域研究,小乌兰沟正长花岗岩为上元古界变基性岩与中奥陶统变中性岩在低压、高温条件下发生部分熔融作用形成,是蒙古-鄂霍茨克洋闭合后伸展作用的产物.   相似文献   

4.
无色透明的人造 Zn(Zn_(0.1)Li_(0.6)Si_(0.3)SiO_4的室温形体(a)具有单斜对称,a=6.340(1),b=10.516(2)、C=5.011(1)A,β=90.50(2)°,空间群 P2./n,Z=4。大约在400℃,转变为斜方晶系的高温形体(β),a=6.406(3),b=10.520(8),C=5.043(2)(?),空间群 Pmnb,Z=4。根据室温和450℃的×—射线强度数据,用三维图象分析法,确定了两种形体的晶体结构。用最小二乘法分别按照最终加权 R=0.068(未加权的 R=0.068)和0.064(未加权的 R=0.070)精选了室温和高温结构。高温结构是一种具有共用系数为3的四面体架状结构。有两种不同的四面体位置:T_1,8次配位位置;T_2,4次配位位置。T_1位置包含了全部的 Zn 和 Li 以及某些 Si;T_2位置全部是 Si。T_1四面体构成平行于(010)的折曲层,这种层是由共顶角的四面体链组成,这些链是平行于[100]的。与辉石族矿物不同,所有四面体都位于链轴的同一侧。这些层按反向平行排列堆积,并由 T_2四面体将这些层交叉连接而组成架状结构。在低于转换温度条件下,8次配位的 T_1位置变为两种独立对称的4次配位位置 T_1(0)和 T_1(m),其对称从 Pmnb 变为 P_2_1/n。Zn 原子在 T_1(0)是完全有序的。转变时,Zn 原子可能集中在两种 T_1位置的某一位置。这种择位的结果就产生一种晶畴结构,其中具有两种通过交切(100)的反射而彼此联系的配位位置。有序——无序转变也产生双晶(a′)结构,这种结构具有单斜对称,空间群 B_2_,a=13.01,b=10.41,C=10.07(?),β≈90°。  相似文献   

5.
近年来,在相山铀矿田的西部牛头山地区深部发现了铅锌矿化体,其成因机制不明.为探讨牛头山铅锌矿化体物质来源,开展了硫化物原位硫同位素分析研究.根据硫化物矿物之间的充填和包裹关系判断,铅锌矿化体金属硫化物形成的先后顺序是:黄铁矿形成最早,方铅矿和闪锌矿次之,细脉状黄铜矿形成最晚.利用LA-MC-ICP-MS技术对矿化体中几种金属硫化物分别进行了系统的原位硫同位素分析.结果显示:黄铁矿、闪锌矿、方铅矿、细脉状黄铜矿的δ34S值介于-4.8‰~+5.4‰之间,各硫化物矿物之间硫同位素未达到完全平衡分馏,利用黄铁矿δ34S值得到的矿化流体δ34SΣS值(总硫同位素组成)近似为+3.7‰,与共生矿物对(闪锌矿-方铅矿)图解法得到的闪锌矿和方铅矿沉淀时矿化流体的δ34SΣS值(+3.2‰)相近,表明形成牛头山铅锌矿化体的矿化流体δ34SΣS值大约为+3.7‰,为岩浆硫.结合前人的岩浆岩年龄数据,我们判断该铅锌矿化体金属硫化物的硫可能主要来自次火山岩相花岗斑岩岩浆热液.同一薄片中闪锌矿δ34S值高于共生的方铅矿,表明两者硫同位素基本平衡,利用共生矿物对(闪锌矿-方铅矿)硫同位素温度计计算得出平衡温度为197~476℃,与前人通过脉石矿物流体包裹体得到的铅锌矿化流体温度基本一致.相山火山盆地与相邻的北武夷黄岗山、梨子坑等产铅锌矿的火山盆地具有相似的成矿条件及成矿物质来源,使相山火山盆地具有良好的铅锌多金属找矿前景.   相似文献   

6.
陈成业  王钦贤  陈多福 《沉积学报》2022,40(6):1691-1701
菱铁矿很好地记录了过去地质流体的信息,能够用于示踪生物地球化学反应相关的成岩作用带。台湾国姓地区中新世海相泥页岩中发育自生的菱铁矿结核,其成因尚未厘清。野外观察发现菱铁矿以不连续透镜体平行散布于泥页岩中,主要由自生碳酸盐菱铁矿(78.63%)等矿物组成。菱铁矿的稀土元素配分模式为轻稀土亏损、中稀土富集,无Ce异常,指示菱铁矿形成于弱氧化的沉积环境,弱氧化的环境促进了菱铁矿在次氧化带的沉淀。菱铁矿的δ13CVPDB和δ18OVPDB值分别为-3.69‰~+0.08‰和-1.09‰~+0.25‰,指示菱铁矿形成于次氧化带,碳源很可能是海水和有机质降解混合产生。研究表明自生菱铁矿能够被用于识别沉积物中的生物地球化学过程和指示成岩作用带。  相似文献   

7.
赵泽南  魏民  杨建坤  倪克庆  张建珍  申晋青  刘腾飞  葛斌 《地质论评》2022,68(5):2022102018-2022102018
阿巴嘎旗阿德拉嘎碱长花岗岩位于贺根山蛇绿岩带北侧。为了确定该碱长花岗岩体的岩石成因类型,探讨其构造环境,对该岩体进行了野外地质、岩石学、地球化学和LA- ICP- MS锆石U- Pb年代学研究。锆石LA- ICP- MS U- Pb测年表明,阿德拉嘎碱长花岗岩体的侵位年龄为310. 7±2. 6Ma,形成时代为晚石炭世。岩石地球化学研究表明,阿德拉嘎碱长花岗岩具有较高的SiO2、Na2O+K2O含量和较高的Ga/Al、(Na2O+K2O)/CaO值,相对贫CaO、MgO、Sr、Ba、Eu、Ti和P。稀土元素总量较低,轻重稀土分馏不明显,稀土配分曲线呈海鸥性,负铕异常明显(δEu=0. 15~0. 37)。岩石学和岩石地球化学特征表明,该碱长花岗岩为A型花岗岩,形成于弧后伸展构造环境,为晚石炭世古亚洲洋向西伯利亚俯冲作用的产物。  相似文献   

8.
为了确定大兴安岭北段晚石炭世二长花岗岩的成因及其构造背景,对免渡河地区二长花岗岩样品进行了锆石U?Pb年代学、Hf同位素及地球化学分析测试.锆石U?Pb测年结果显示,二长花岗岩形成于307~308 Ma,为晚石炭世岩浆活动的产物.主量元素特征表明,二长花岗岩具有富碱(全碱=7.28%~9.08%)、高钾(K2O=3.45%~5.54%)和弱过铝质(A/CNK=1.02~1.19)特征,属高钾钙碱性I型花岗岩.微量元素特征表明,二长花岗岩具有中等的负铕异常(δEu=0.29~0.77),明显富集大离子亲石元素(Rb、K、Th、U)和轻稀土元素,显著亏损高场强元素(Nb、Ta、Ti)和P元素.此外Hf同位素特征显示,εHf(t)值为介于+7.7~+12.5,tDM2年龄介于501~764 Ma,表明岩浆来源于新元古代晚期下地壳新增生的角闪岩相物质部分熔融形成,并经历了显著的结晶分离过程.结合年代学、地球化学与区域地质特征,认为免渡河地区二长花岗岩是额尔古纳-兴安地块与松嫩地块碰撞拼贴后的后碰撞阶段的产物.   相似文献   

9.
闫慧  李心清  周会 《地球化学》2008,37(3):275-280
双壳类壳体碳酸盐(文石)稳定同位素组成已被广泛地用于古气候和古环境重建研究中,但是双壳类壳体碳同位素组成所指示的气候和环境意义一直是争议的问题。对双壳类河蚬(corbicula fluminea)进行了室内养殖,并选取两个壳体样品(壳高,A=13mm,B=9mm),测定其生长部分壳体和生长期间水体碳同位素,研究表明,随着水体碳同位素的升高(δCmc由-5.24‰升至1.41‰),两壳体碳同位素也随之升高,表明水体对壳体碳同位素的影响;δ13CA分布范围为-4.76‰-2.09‰,δ13CB为-8.49‰-2.89‰,壳体A和B碳同位素均比预测平衡值偏负,表明壳体在形成过程中利用了新陈代谢产生的富集12C的CO2。根据计算壳体A在实验中沉淀部分壳体利用新陈代谢碳的比例(M值)为24%~43%,平均值为33%;壳体B为33%~75%,平均值为58%。肘值随生物的生长呈下降变化,这说明在实验中河蚬主要是通过增加对DIC的吸收和利用来满足壳体生长对物质量增加的需求。  相似文献   

10.
矿物聚合材料固化过程中的聚合反应机理研究   总被引:15,自引:2,他引:13  
以粉煤灰、高岭石等为原料,制备出具有良好力学性能和耐酸性的矿物聚合材料制品,可代替部分硅酸盐水泥制品。根据矿物聚合材料制品在3 d、7 d、14 d、28 d的X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)、核磁共振(NMR)等测试分析结果,研究了该材料固化过程中的聚合反应机理。研究结果表明,矿物聚合材料在固化过程中的反应如下:(1)粉煤灰中的玻璃相在强碱的作用下首先发生溶解,其中部分Si-O、Al-O键发生断裂;(2)断裂之后的Si、Al组分在碱金属离子Na+、OH- 等作用下形成Si、Al低聚体(-Si-O-Na、-Si-O-Ca-OH、Al(OH)-4、Al(OH)2-5、Al(OH)3-6),而后随着溶液组成和各种离子浓度的变化,这些低聚体形成凝胶状的类沸石前驱体;(3)前驱体脱水形成非晶相物质。核磁共振分析结果表明,28 d制品中,Si的存在方式以Q4为主。研究结果为进一步揭示矿物聚合材料的形成机理、改善制品的性能奠定了良好的基础。  相似文献   

11.
12.
X-ray absorption fine structure (XAFS) measurements was used at the U L3-edge to directly determine the pH dependence of the cell wall functional groups responsible for the absorption of aqueous UO22+ to Bacillus subtilis from pH 1.67 to 4.80. Surface complexation modeling can be used to predict metal distributions in water-rock systems, and it has been used to quantify bacterial adsorption of metal cations. However, successful application of these models requires a detailed knowledge not only of the type of bacterial surface site involved in metal adsorption/desorption, but also of the binding geometry. Previous acid-base titrations of B. subtilis cells suggested that three surface functional group types are important on the cell wall; these groups have been postulated to correspond to carboxyl, phosphoryl, and hydroxyl sites. When the U(VI) adsorption to B. subtilis is measured, observed is a significant pH-independent absorption at low pH values (<3.0), ascribed to an interaction between the uranyl cation and a neutrally charged phosphoryl group on the cell wall. The present study provides independent quantitative constraints on the types of sites involved in uranyl binding to B. subtilis from pH 1.67 to 4.80. The XAFS results indicate that at extremely low pH (pH 1.67) UO22+ binds exclusively to phosphoryl functional groups on the cell wall, with an average distance between the U atom and the P atom of 3.64 ± 0.01 Å. This U-P distance indicates an inner-sphere complex with an oxygen atom shared between the UO22+ and the phosphoryl ligand. The P signal at extremely low pH value is consistent with the UO22+ binding to a protonated phosphoryl group, as previously ascribed. With increasing pH (3.22 and 4.80), UO22+ binds increasingly to bacterial surface carboxyl functional groups, with an average distance between the U atom and the C atom of 2.89 ± 0.02 Å. This U-C distance indicates an inner-sphere complex with two oxygen atoms shared between the UO22+ and the carboxyl ligand. The results of this XAFS study confirm the uranyl-bacterial surface speciation model.  相似文献   

13.
14.
 The chemical bonding in the ring silicate mineral dioptase is investigated on the basis of accurate single-crystal X-ray diffraction data. A multipole model is used in the refinements. Static deformation electron density is mapped for the silicon tetrahedron, Cu-octahedron and water molecule in different sections. The silicon tetrahedron exhibits peaks resulting from σ-bonds between Si–sp3 hybrid orbitals and O–p orbitals. The excess density is located on bonds between the Si atom and bridge (in ring) O(1)-, O(1′)-oxygens and across the interior of the Si–O–Si angle. In the Jahn-Teller distorted Cu octahedron, in addition to peaks which result from single Cu–O σ-bonds, there are peaks which are due to 3d electrons. The analysis of crystal-field influence on the Cu charge distribution is made using the tetragonal D 4 d approximation for the low-symmetry (C1) Cu octahedron. The calculation of the occupancies of the 3d atomic orbitals shows that the Cu non-bonding orbitals are most populated (˜20%) and the bonding orbitals least populated (14%), as is typical for the Jahn-Teller octahedron. The effective atomic charge on the Cu atom in dioptase determined from the multipoles is +1.23e: closer to the Cu+1 than to the Cu+2 state. The charge on the Si atom has a value +1.17e, which is in the range typical for Si atoms already determined by this method. The accumulation of density on bridge oxygens and across the interior of the Si–O–Si angle may be explained by additional strain in the bond with the decrease of the Si–O–Si angle in dioptase to 132°. The same effect was found earlier in coesite. A single-crystal neutron diffraction study shows that dioptase becomes antiferromagnetic below a Néel temperature of 15.9(1) K, in contrast to the previously reported specific heat anomaly at 21 K. The magnetic propagation vector is (0, 0, 3/2) on the hexagonal triple cell or (1/2, 1/2, 1/2) in rhombohedral indices. The relation between the antiferromagnetic and the charge-density models for dioptase is discussed. The less occupied Cu d x2−y2 orbitals are responsible for the magnetic properties. These lie in the Cu–O squares, which are approximately perpendicular to c hex, but which are alternately inclined to it by a small angle. The magnetic moments of 0.59(1)μ B on the Cu ions in the same level are ordered ferromagnetically, but between ions in alternate levels the coupling is antiferromagnet. Within experimental error the magnetic moments are perpendicular to the square planes, which make an angle ±13(3)° to the triad axis. Received: 8 June 2001 / Accepted: 10 January 2002  相似文献   

15.
The molecular orbital and crystal field theories are compared and their applicabilities to bonding in silicates are discussed, A molecular orbital bonding model is favoured for orthopyroxene since bonding in both tetrahedral and non-tetrahedral sites within the crystal structure can be described and accommodated by the theory. It is suggested that Fe located in M2 sites has more electron delocalisation (or covalence) associated with it than Fe located in the M1 site. Order-disorder phenomena in orthopyroxene are discussed in relationship to Mueller's (1970) two-step exchange mechanism, whereby the first step corresponds to vacancy activation and the second step to exchange of Fe between an ‘octahedral’ site and a vacancy.  相似文献   

16.
《Chemical Geology》2006,225(3-4):291-303
The Fe–Co–Ni–As–S system has been investigated by combining experimental data with data compiled from literature. The main focus is the phase relations and crystal chemistry of the monosulfide, pentlandite, gerdorffite–cobaltite, diarsenide, and skutterudite solid solutions.The phase relations along the Co(As, S)2–Ni(As, S)2 section has been constructed using literature data. There was reasonable agreement between the different data sets and it was possible to combine them into a unifying model showing the phase relations enveloping the gersdorffite–cobaltite solid solution.The compositional variations and the related changes in unit-cell parameters of these five Fe–Co–Ni-bearing solid solutions have been statistically analyzed. Comparison between the resulting coefficients and the effective ionic radius [Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A32, 751–767.] of the substituting elements test assumptions made concerning valence, spin state, and metal–metal bonding.Monosulfide solid solution and pentlandite both behave in a way consistent with extensive metal–metal bonding. Fe causes significant relative unit-cell expansion; Co causes a large contraction of the unit cell and Ni a moderate contraction. This supports previously suggested bonding models arguing that 56 d electrons stabilize the pentlandite cube-cluster and one d electron from each metal atom participate in metal–metal bonding. Crystal chemical models explaining the variation in the metal/sulfur ratio in pentlandite by metal vacancies are challenged by the observation that excess sulfur increases the unit-cell size of pentlandite.In cobaltite–gersdorffite, diarsenide, and skutterudite, Co has less than half the structural impact than Ni, although both elements caused significant increases in some unit-cell parameters. This partly contradicts bonding models explaining the metal atoms to be in their divalent low-spin state in cobaltite–gersdorffite and the diarsenides, suggesting that the bonding situation is more complex than normally assumed. Substituting As with S causes an expected unit-cell increase in cobaltite–gersdorffite.  相似文献   

17.
Neutron powder diffraction data of phase A (Mg7Si2O8(OH)6) were collected at ambient pressure and 3.2?GPa (calculated from the compressibility of phase A) from the deuterated compound, and the structure was refined using the Rietveld method. The derived crystal structure implies that hydrogen atoms occupy two distinct sites in phase A, both forming hydrogen bonds of different lengths with the same oxygen atom. This picture is supported by IR spectra, which exhibit two absorption bands at 3400 and 3513?cm?1 corresponding to OH stretching vibrations, and proton NMR spectra, which display two peaks with equal intensities and isotropic chemical shifts of 3.7 and 5?ppm. The D-D distance [D(1)-D(2) distance] at ambient pressure was found to be 2.09?±?0.02?Å from the neutron diffraction data and 2.09?±?0.05?Å from the NMR spectra. At 3.2?GPa, there is no statistically significant increase in the O-D interatomic distance while the hydrogen bonding interaction D···O appears to increase for one of the hydrogen sites, D(1), which has the stronger hydrogen bonding interaction compared with the other hydrogen, D(2), at ambient pressure. The O-D bond valences, determined indirectly from the D···O distances were 0.86 and 0.91 at ambient pressure, and 0.83 and 0.90?at 3.2?GPa, for D(1) and D(2), respectively.  相似文献   

18.
The structural diversity of arsenic sulfide molecules in compositions between As4S6 and As4 was investigated using ab initio quantum chemical calculations. The As4S6 molecule consists of four trigonal pyramid coordinations of As atoms bonding to three S atoms. In the As4S5 composition, only one type of molecular configuration corresponds to an uzonite-type molecule. In the As4S4 composition, two molecular configurations exist with realgar-type and pararealgar-type molecules. Three molecular configurations are in the As4S3 composition. The first configuration comprises trigonal pyramidal As atom coordinations of two types: bonding to two S atoms and one As atom, and bonding to one S atom and two As atoms. The second is the molecular configuration of dimorphite. The third comprises trigonal pyramidal As atom coordinations of two types: bonding to three As atoms, and bonding to one As atom and two S atoms. The As4S2 composition allows molecular configurations of two types. One is comprised of trigonal pyramidal As atom configurations of one type bonding to two As atoms and one S atom. The other comprises trigonal pyramidal As atom coordinations of three types: bonding to two S atoms and one As atoms, bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S molecule has trigonal pyramidal As atom coordinations of two types: bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S composition permits only one molecular configuration, which suggests that the mineral duranusite comprises the As4S molecular geometry. In all, ten molecular configurations are predicted in the molecular hierarchy of the arsenic sulfide binary system. The simulated Raman spectral profiles are helpful in searching for undiscovered arsenic sulfide minerals.  相似文献   

19.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

20.
X-ray structure determinations of Langbeinite type K2(Cd1-xCox)2(SO4)3, x≅0.02 at three temperatures (440, 540 and 640 K) above the P2 13-P2 12121 transition temperature (434 K) reveal that the M 2+ (M 2+=Cd) ion is displaced from the centre of the octahedron at all temperatures in the cubic phase. Simultaneously the distortion of the oxygen framework decreases with increasing temperature. The structural phase transition occurs when the bond lengths of the six bonds in each of the M 2+ octahedra are all equal, and it is proposed that this equalisation of bond lengths acts as the trigger for the phase transition. The structural deformation of the oxygen sublattice is such that rather regular octahedra around Cd occur at very high temperatures with Cd displaced from the centre. With decreasing temperature the octahedra distort under conservation of the triad, such that the differences between the various bond lengths Cd-O decrease. The phase transition occurs when all bond lengths around the Cd position become equal. The behaviour of the oxygen framework and the offcentring of the Cd/Co atom combine to produce an increasing distortion with increasing temperature as viewed by the central atom. Thus the interpretation of Optical Spectra, in which an increase in line splitting with temperature was observed, as being due to the off-centring of the Co, is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号