首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
云南金沙厂铅锌矿床硫同位素地球化学特征   总被引:2,自引:0,他引:2  
金沙厂铅锌矿床位于云南省东北部,川-滇-黔铅锌成矿域的西北部,矿体主要赋存于下寒武统和上震旦统的碳酸盐地层中。该矿床的主要矿石矿物是闪锌矿和方铅矿,主要脉石矿物是重晶石、萤石和石英。闪锌矿的δ34S值分布于3.9‰~11.2‰之间,平均为5.7‰;方铅矿的δ34S值在6.0‰~9.0‰之间,平均为7.1‰;两个重晶石的δ34S值分别为34.8‰和34.5‰。重晶石的δ34S值与下寒武地层硫酸盐的一致,排除其他可能来源,认为重晶石的硫来源于下寒武统地层。硫化物的硫不可能来自细菌硫酸盐还原作用,因为流体包裹体均一温度远高于细菌的存活温度。硫酸盐热化学还原作用产生的同位素分馏至多为20‰,由此可知下寒武统地层中硫酸盐发生热化学还原作用产生的还原硫δ34S值至少应为14‰,这个值远高于该矿床硫化物δ34S值,因此这种机制不是还原硫的唯一来源。矿区周围广泛分布玄武岩,并且与岩浆有关的硫化物δ34S值比较低,所以硫化物中的硫可能来自岩浆活动。在方铅矿和闪锌矿共生的样品中,闪锌矿的δ34S值大于方铅矿的δ34S值,说明成矿流体的硫同位素局部达到平衡。利用矿物对硫同位素组成计算的硫化物平衡温度与流体包裹体均一温度一致。  相似文献   

2.
青海沱沱河地区多才玛铅锌矿床是西南三江特提斯北段新生代铅锌矿集区的典型矿床之一,本文首次应用飞秒激光剥蚀多接受器等离子体质谱法对多才玛铅锌矿床中金属硫化物的原位S和Pb同位素进行了测定。结果显示:黄铁矿、方铅矿和闪锌矿的原位S同位素的δ~(34)S_(V-CDT)值介于-26.34‰~4.24‰之间,均值-12.15‰(n=20),其中闪锌矿的δ~(34)S_(V-CDT)值介于-10.30‰~-3.52‰,均值-7.39‰(n=9);方铅矿的δ~(34)S_(V-CDT)值为-26.34‰~-11.74‰,均值-20.36‰(n=9);黄铁矿的δ~(34)S_(V-CDT)值分别为2.50‰,4.24‰。矿床δ~(34)S数据范围较宽,总体表现为富集负值硫的特征,说明有机质可能参与成矿。岩浆热液期发育的黄铁矿δ~(34)S值具有深源特征,沉积热液期发育的方铅矿和闪锌矿的δ~(34)S值表明成矿过程存在还原作用,指示盆地地层还原流体的混入,综上可认为多才玛铅锌矿床硫具有混合来源的特征。方铅矿原位Pb同位素结果为~(206)Pb/~(204)Pb=18.866~18.929,~(207)Pb/~(204)Pb=15.674~15.689,~(208)Pb/~(204)Pb=39.052~39.174。方铅矿与地层的Pb同位素组成一致,位于上地壳平均Pb演化线之上,具上地壳和地幔混合俯冲带铅的特征,表明其成矿物质的来源多样。结合矿床学、矿物学及同位素数据,本文认为多才玛铅锌矿床S元素主要来源于赋矿围岩,Pb金属元素主要来源于藏北钾质火山岩,侵入地层岩浆与盆地流体的混合是金属硫化物沉淀的重要机制。  相似文献   

3.
为探讨会泽铅锌矿田成矿流体总硫同位素组成、成矿温度、硫源及还原硫的形成机制,在分析前人的硫同位素数据基础上对麒麟厂矿床上部原生矿体硫化物(黄铁矿、闪锌矿和方铅矿)及麒麟厂和矿山厂矿床外围新发现的硫酸盐矿物(重晶石)进行了硫同位素研究。结果显示,原生矿体中的硫化物的δ34S变化为8.0‰~17.68‰,成矿流体中硫同位素已达分馏平衡;矿床外围的硫酸盐δ34S变化为17.95‰~24.30‰。利用共生矿物对Pinckney法,估算获得成矿流体的δ34SΣS为14.44‰,与海相硫酸盐的δ34S相近;通过同位素地质温度计,估算获得成矿温度为134~388℃;包裹体测温发现,重晶石为热液成因,暗示成矿流体中的硫可能来自矿区及矿区外围各个地层的海相硫酸盐或是矿区发现的热液重晶石。硫酸盐的还原机制应为热化学还原作用(TSR)。  相似文献   

4.
湘南宝山铅锌银矿床硫同位素的地球化学特征及地质意义   总被引:1,自引:0,他引:1  
章勇 《地质与勘探》2018,54(1):82-89
成矿热液的总硫同位素组成(ΣS)可以更加准确地反映成矿流体中硫的来源。本文通过对湖南宝山矿床硫同位素以及总硫同位素的研究发现,金属硫化物样品的δ~(34)S值绝大多数为正值,变化区间为6.40‰~6.91‰,一般为-6.40‰~5.29‰,均值为2.22‰,其中黄铁矿δ~(34)S变化范围为-1‰~4.61‰,均值为2.92‰;方铅矿δ~(34)S变化范围为-0.80‰~1.70‰,均值为0.53‰;闪锌矿δ~(34)S变化范围为1.80‰~4.31‰,均值为2.69‰。具有集中的δ~(34)S值分布以及单一的峰值,表明硫的来源比较单一,具有岩浆硫特点,同位素组成具有δ~(34)S_(黄铁矿)δ~(34)S_(闪锌矿)δ~(34)S方铅矿的特征,证明成矿物质沉淀时基本达到了硫同位素分馏平衡。通过总硫同位素的分析,得出高温与低温两组数据,通过Pinckney图解计算获得中低温阶段的δ~(34)S_(ΣS)为1.28‰,高温阶段的δ~(34)S_(ΣS)为1.68‰。表明成矿流体的硫同位素组成变化很小,仅有0.4‰,且其总硫同位素组成为1.78‰,均显示矿床成矿流体具有地幔硫的特点,表明矿床中的硫可能来自地幔。  相似文献   

5.
广东大宝山多金属矿床成矿物质来源同位素证据   总被引:4,自引:0,他引:4       下载免费PDF全文
笔者对大宝山多金属矿床矿石和脉石矿物进行铅、硫、氢和氧同位素组成测定,获得硫化物的206Pb/204Pb值为17.930~18.785;207Pb/204Pb值为15.491~15.772;208Pb/204Pb值为37.990~40.990,并组成良好的线性关系。泥盆系地层中黄铁矿的δ34S为-22.5‰~+17.9‰,矿床硫化物的δ34S为-2.4‰~+4.6‰。黄铁矿、闪锌矿和方铅矿共生矿物对,具有δ34Spy>δ34Ssp>δ34Sgn,用磁黄铁矿的硫同位素组成估算出δ34S∑S为2‰±3‰。硫化物包裹体的氢同位素在-101‰~-123‰之间,与硫化物共生石英的氧同位素为+9.3‰~+17.9‰,换算成水的氧同位素为+0.3‰~+3.9‰,表明成矿热液来源较为复杂。  相似文献   

6.
对新疆霍什布拉克铅锌矿床硫化物硫、铅同位素测定,获得成矿早期黄铁矿的δ34S值为-12.1‰~-8.5‰,闪锌矿的δ34S值为-17.6‰,方铅矿的δ34S值为-18.8‰;晚期黄铁矿的δ34S值为+12.8‰~+22.2‰,闪锌矿的δ34S值为+20.0‰~+24.2‰,方铅矿的δ34S值为+14.4‰+22.2‰.成矿从早到晚,硫同位素由大的负值变化到大的正值,方铅矿的206 Pb/204 Pb比值为17.900-18.086,207Pb/204Pb比值为15.586-15.732,208Pb/204Pb比值为37.997-38.381;黄铁矿的206Pb/204Pb比值为17.950,207 pb/204Pb比值为15.633,208 pb/204 Pb比值为38.144.灰岩的206pb/204 Pb比值为18.156-18.875,207Pb/204Pb比值为15.396-15.855,208Pb/204Pb比值为37.631-38.967.硫同位素指示硫来源于海水硫酸盐还原硫.铅同位素指示至少有两上以上来源.  相似文献   

7.
湖南香花岭锡多金属矿床同位素地球化学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
笔者对湖南香花岭锡多金属矿床成矿期不同的矿物组合进行矿物包裹体温度和硫、铅同位素测定,获得了锡石-硫化物阶段平均-温度为350℃,硫化物阶段平均均-温度为250℃.锡石-硫化物中黄铁矿的δ34为-1.O‰~+5.4‰;闪锌矿的δ34S为+0.8‰-+5.8‰;磁黄铁矿的δ34S为+1.5‰~5.2‰;方铅矿的δ34S为-1.0‰+3.6‰,具有变化范围小,组成稳定的特点.方铅矿的206Pb/204Pb值为17.785~19.341,207Pb/204Pb值为15.416~16.452,208Pb/204Pb值为38.357~42.579.硫同位素指示硫来源于岩浆,铅同位素指示是多来源.  相似文献   

8.
通过塔西南缘铅锌矿带金属硫化物(方铅矿、黄铁矿、黄铜矿、闪锌矿)的硫同位素测试研究,结果显示δ34S值范围在-38.3‰~24.0‰,具双峰式分布,推测两种或两种以上流体相混合是导致矿床硫同位素组成变化的主要原因,一类硫化物的δ34S值集中在-6‰~6‰,组成的矿石呈细粒、草莓状结构及浸染状构造;另一类硫化物的δ34S值集中在-32‰~-24‰,组成的矿石呈粗粒、脉状或角砾状构造。两种流体受构造应力和压实作用的影响,沿着断裂或岩石的裂隙运移并相混合,发生热化学硫酸盐还原反应,产生的HS-与Zn2+、Pb2+结合形成闪锌矿、方铅矿,在有利部位沉淀成矿。硫主要来源于海水硫酸盐。  相似文献   

9.
通过详细的野外地质工作和显微镜下观察,对云南兰坪盆地东北部维西—乔后断裂带上三叠统石钟山组(T3s)中产出的铅锌矿床成因进行厘定。研究结果表明,测区内存在大量典型的同生沉积矿床标志,如:纹层构造、条纹条带构造、网脉构造、黄铁矿条带软沉积构造、黄铁矿草莓状结构、黄铁矿胶状构造、闪锌矿同心环状构造等。青甸湾矿床金属硫化物硫同位素测试结果显示,黄铁矿的δ34 S介于3.7‰ ~ 8.1‰,均值5.34‰; 闪锌矿的δ34 S介于5.2‰ ~ 10.0‰之间,均值为7.18‰; 方铅矿的δ34 S介于5.2‰ ~ 9.9‰之间,均值为7.275‰,铅锌矿床硫来源于海水硫酸根无机还原。结合矿床形成时代及大地构造背景,认为该区铅锌矿为喷流沉积作用形成。   相似文献   

10.
湖南宝山Cu-Mo-Pb-Zn-Ag多金属矿床规模大、矿种多、分带明显,是南岭有色金属成矿带的代表性矿床之一。本文对该矿床的硫同位素组成进行了较系统的研究,以探讨该矿床成矿物质的来源。研究表明,硫化物硫同位素组成具有δ34S黄铁矿δ34S闪锌矿δ34S方铅矿特征,说明成矿流体中硫已达到分馏平衡;矿床硫化物的硫同位素组成均为较低正值,变化范围很窄,δ34S值主要集中在1.50‰~4.50‰之间,峰值在3‰左右,明显低于研究区石炭系碳酸盐岩硫同位素δ34S值(17.8‰~22.6‰),具岩浆硫特征,暗示成矿流体中硫主要来源于燕山期花岗闪长斑岩有关的岩浆分异,地层硫贡献较少。此外,不同围岩的矿体,硫化物δ34S值基本相同,围绕花岗闪长斑岩体δ34S值没有分带现象,表明硫的来源具有一致性。因此,有理由认为,赋存于下石炭统梓门桥组白云岩、测水组砂页岩和石凳子组灰岩中的Pb-Zn多金属矿化具有相同成因联系,它们应为同一岩浆-热液系统演化的产物。  相似文献   

11.
藏南扎西康铅锌多金属矿床是特提斯喜马拉雅构造带(TH)东段发现的首个大型铅锌矿床,但其成因备受争议。本文在详细研究矿床地质特征的基础上,对矿硐内具有"同心环带"或"热水蛋"构造的铅锌矿石中的黄铁矿、方铅矿和闪锌矿进行了原位微区硫同位素分析。结果显示:铅锌矿石硫同位素组成变化范围在8.88‰~11.83‰之间,平均为10.50‰,总硫同位素组成(δ34S∑S)约为10.07‰。其中:7个黄铁矿(Py)测点的δ34SPy值为10.29‰~11.14‰,平均为10.70‰;6个闪锌矿(Sp)测点的δ34SSp值为10.78‰~11.83‰,平均为11.49‰;5个方铅矿(Gn)测点的δ34SGn值为8.88‰~9.18‰,平均为9.04‰。总体表现为δ34SSp > δ34SPy > δ34SGn,指示硫同位素未达到分馏平衡。利用方铅矿与闪锌矿矿物对硫同位素温度计计算可得,铅锌成矿温度介于224~280℃之间,平均值为259℃。结合前人研究成果,进一步得出扎西康铅锌多金属矿床主成矿期硫源主要来自日当组(J1r)围岩地层,并可能有少量岩浆硫的混入,属受控于地层-构造-岩浆热液作用的中温热液矿床。  相似文献   

12.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   

13.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

14.
湘西-黔东地区位于扬子陆块东南缘,在该地区碳酸盐岩地层中,目前已发现大、中、小型铅锌矿床及矿点200余处.为了解湘西-黔东地区铅锌矿床成矿作用过程,系统总结了区内主要铅锌矿床地质与地球化学特征,并对成矿机制进行探讨,建立成矿模式.区内铅锌矿床主要赋存于下寒武统碳酸盐岩中,分布明显受断裂及褶皱构造控制,矿体主要为层状、似层状或透镜状,矿物组成主要为闪锌矿、方铅矿、黄铁矿、方解石及少量萤石、重晶石和沥青,并伴随着广泛的以方解石化为主的热液蚀变.闪锌矿与方解石中的流体包裹体均一温度集中在120~200℃之间,盐度集中在8%~20%(NaCleqv)之间;成矿期方解石的δ13CPDB值范围为-4.89‰~1.50‰,δ18OSMOW值范围为13.37‰~25.09‰,略低于碳酸盐围岩;矿石硫化物δ34S值变化范围为22.3‰~36.1‰,以富含重硫为主;矿石硫化物铅同位素组成较为均一,变化范围较小,206Pb/204Pb在17.952~18.678之间,207Pb/204Pb在15.635~15.832之间,208Pb/204Pb在38.015~39.255之间.对地质和地球化学资料的综合分析表明,湘西-黔东地区铅锌矿床成矿流体为低温、中高盐度热卤水,主要来源于建造水和大气降水,成矿流体中的碳主要来源于碳酸盐围岩的溶解作用,硫来源于碳酸盐岩地层中硫酸盐热化学还原作用(TSR),铅锌主要来源于下伏地层,成矿时代为晚志留世-早泥盆世,属于比较典型的密西西比河谷型(MVT)铅锌矿床.综合以上分析建立了该地区铅锌矿床有机质参与下的多源流体混合成矿模式.   相似文献   

15.
Sulfide and sulfate ore samples collected from the Hakurei deposit of the Bayonnaise knoll were examined for the occurrence and chemical composition of minerals, including the sulfur isotopes and the microthermometry of fluid inclusions. Massive sulfide ore, mineralized volcanic rock, and anhydrite ore occur in descending order, from the seafloor to the bottom of the cored sample. The massive sulfide ore is dominated by sphalerite and accompanied by tennantite, chalcopyrite, and pyrite with lesser amounts of galena, enargite, and covellite. Amorphous silica is commonly precipitated on the surface of the sulfide minerals. As‐bearing minerals such as tennantite, enargite, and luzonite are common, while galena and Sb‐rich tetrahedrite are scarce. The mineral abundance and chemical composition of the minerals differs from that found in chimneys of the deposit. The sulfur isotope compositions in the minerals are +3.1–5.2‰ for sulfides and +19.6–21.8‰ for sulfate minerals. The homogeneous nature of the sulfur isotopes suggests that sulfur incorporated in the Hakurei deposit came from the reduction of aqueous sulfate in seawater.  相似文献   

16.
东天山红山铜-金矿床为卡拉塔格铜-金成矿带上新发现的两个铜-金矿床之一,大地构造位置上处于大南湖-突苏泉晚古生代岛弧带北段的中生代火山盆地中。容矿岩主要为流纹英安质火山碎屑岩,矿化与石英斑岩、流纹斑岩、次花岗斑岩密切相关,铜金矿化主要呈细脉浸染状和细脉状。该矿床处于东天山极端干旱少雨且稳定的荒漠地带,产有一系列复杂罕见的铁硫酸盐矿物。笔者研究了红山铜-金矿床具有代表性蚀变矿化的原生硫化物样品,其3δ4S值为+1.86‰~+5.69‰,平均值为3.70‰,绝大部分集中在+1.86‰~+3.20‰,且3δ4Scp小于δ34Spy,说明斑岩的成矿流体来自地幔,但却受到地壳的混染,成矿流体作用中S同位素分馏达到平衡。8种硫酸盐矿物的δ34S变化在2.15~6.73‰,平均值为3.74‰,与本矿床原生硫化物的3δ4S值+1.86‰~+5.69‰非常接近,说明该矿床的S源主要来自地幔流体,硫酸盐继承了母体硫化物的同位素组成。通过红山矿区岩芯矿化蚀变情况和激电剖面、激电测深以及Eh-4剖面资料分析,红山深部矿化异常体都具有低阻、中高极化的特征,Eh-4连续电导率剖面资料显示,深部450 m以下可能存在有隐伏的斑岩体,岩体顶部及周围为100~300Ω.m的低阻体,它极可能为铜矿的赋矿部位。因此,红山铜金矿区呈现出浅部(200~300 m以上)高硫化物型浅成-低温热液型金矿和深部(300 m以下)斑岩铜矿的成矿体系,具有寻找大型规模浅成低温热液-斑岩金-铜矿床的潜力。  相似文献   

17.
河南瓦房铅锌矿床位于华北克拉通南缘熊耳山—外方山矿集区,矿体赋存于熊耳群鸡蛋坪组上段(Chj3)的地层中,矿石矿物有黄铁矿、方铅矿、闪锌矿和少量黄铜矿、赤铁矿、褐铁矿。该矿床热液成矿过程划分为3个阶段:石英-黄铁矿阶段(早阶段),石英-多金属阶段(中阶段),石英-碳酸盐脉阶段(晚阶段)。矿石中石英和方解石中捕获的原生包裹体类型有NaCl-H2O型两相、NaCl-CO2-H2O型三相和纯气相。气液两相包裹体3个阶段均一温度范围分别为150~260、150~230和110~160℃,3个阶段盐度(w(NaCl))平均值分别为12.22%、8.55%和6.29%。中阶段方解石的δ13 CVPDB平均值为-7.34‰,δ18 OSMOM平均值为15.56‰;晚阶段方解石的δ13 CVPDB平均值为-3.05‰,δ18 OSMOW平均值为2.21‰。早阶段硫化物的δ34S值为2.747‰~7.737‰,中阶段硫化物的δ34S值为-11.187‰~7.286‰。认为早中阶段成矿流体为变质流体,与中生代扬子克拉通和华北克拉通发生陆陆碰撞诱发中—新元古代时期的俯冲板片变质脱水有关,成矿晚阶段流体有大气降水的混入。硫同位素表明硫来源于中—新元古代的沉积地层,是海相硫酸盐的还原产物,在晚阶段,由于大气降水的混入导致δ34S出现负值。瓦房铅锌矿床地质特征、成矿流体特征与造山型矿床相似,因此,瓦房铅锌矿床属于造山型铅锌矿床。  相似文献   

18.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

19.
Karavansalija ore zone is situated in the Serbian part of the Serbo‐Macedonian magmatic and metallogenic belt. The Cu–Au mineralization is hosted mainly by garnet–pyroxene–epidote skarns and shifts to lesser presence towards the nearby quartz–epidotized rocks and the overlying volcanic tuffs. Within the epidosites the sulfide mineralogy is represented by disseminated cobalt‐nickel sulfides from the gersdorfite‐krutovite mineral series and cobaltite, and pyrite–marcasite–chalcopyrite–base metal aggregates. The skarn sulfide mineralization is characterized by chalcopyrite, pyrite, pyrrhotite, bismuth‐phases (bismuthinite and cosalite), arsenopyrite, gersdorffite, and sphalerite. The sulfides can be observed in several types of massive aggregates, depending on the predominant sulfide phases: pyrrhotite‐chalcopyrite aggregates with lesser amount of arsenopyrite and traces of sphalerite, arsenopyrite–bismuthinite–cosalite aggregates with subordinate sphalerite and sphalerite veins with bismuthinite, pyrite and arsenopyrite. In the overlying volcanoclastics, the studied sulfide mineralization is represented mainly by arsenopyrite aggregates with subordinate amounts of pyrite and chalcopyrite. Gold is present rarely as visible aggregate of native gold and also as invisible element included in arsenopyrite. The fluid inclusion microthermometry data suggest homogenization temperature in the range of roughly 150–400°C. Salinities vary in the ranges of 0.5–8.5 wt% NaCl eq for two‐phase low density fluid inclusions and 15–41 wt% NaCl eq for two‐phase high‐salinity and three‐phase high‐salinity fluid inclusions. The broad range of salinity values and the different types of fluid inclusions co‐existing in the same crystals suggest that at least two fluids with different salinities contributed to the formation of the Cu–Au mineralization. Geothermometry, based on EPMA data of arsenopyrite co‐existing with pyrite and pyrrhotite, suggests a temperature range of 240–360°C for the formation of the arsenopyrite, which overlaps well with the data for the formation temperature obtained through fluid inclusion microthermometry. The sulfur isotope data on arsenopyrite, chalcopyrite, pyrite and marcasite from the different sulfide assemblages (ranging from 0.4‰ to +3.9‰ δ34SCDT with average of 2.29 δ34SCDT and standard deviation of 1.34 δ34SCDT) indicates a magmatic source of sulfur for all of the investigated phases. The narrow range of the data points to a common source for all of the investigated sulfides, regardless of the host rock and the paragenesis. The sulfur isotope data shows good overlap with that from nearby base‐metal deposits; therefore the Cu–Au mineralization and the emblematic base‐metal sulfide mineralization from this metallogenic belt likely share same fluid source.  相似文献   

20.
Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from ?1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号