首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
多年冻土区土壤蒸散发对气候变化的敏感性分析   总被引:1,自引:0,他引:1  
由于不同区域蒸散发对气候变化的敏感性各不相同,为摸清多年冻土活动层陆面过程中冻土-气候变化-水文循环之间的相互关系,选择青藏高原风火山区域的典型多年冻土区,依据气象站观测资料,应用Penman-Monteith公式计算了典型多年冻土区土壤蒸散发和蒸散发气候敏感系数,分析了多年冻土区土壤蒸散发对气候变化的敏感性。结果表明:多年冻土区土壤蒸散量对相对湿度的敏感性最高(-1. 291),其次为风速(0. 658),对空气温度的敏感性最低(0. 248);土壤完全融化的植被生长期,蒸散发对各气象因子的敏感性最高,土壤完全冻结的植被枯萎期,蒸散发对各气象因子的敏感性都最低;年内尺度,蒸散发对气温、相对湿度和风速的敏感性均在8月最高,在1月或12月最低;蒸散发对气温和相对湿度的敏感性变化与植物生长变化过程高度一致,而蒸散发对风速的敏感性则较为复杂,与土壤的冻融过程相关,分别在土壤逐渐融化的植物生长前期和土壤完全融化的植物生长期敏感性较高。  相似文献   

2.
以石羊河流域5个气象站点1960~2009年逐日气象资料为基础,从估算模型和统计角度计算分析了该流域参考蒸散量及蒸发皿蒸发量的变化趋势和变化原因。结果表明:过去50 a石羊河流域蒸散发呈增加趋势,个别站点达极显著水平(p<0.01),1960~2009年和1970~2009年不同时段的选择对分析结果有一定的影响。估算模型理论分析认为桑斯威特法计算的参考蒸散量变率主要由气温决定,蒸发皿蒸发量和彭曼蒙蒂斯公式计算的参考蒸散量变化则是辐射、气温、风速及空气饱和差共同作用的结果,而相关分析和突变检验的分析结果验证了上述结论,并得出过去50 a石羊河流域蒸发皿蒸发量和彭曼蒙蒂斯公式计算的参考蒸散量变化的主要决定因素是空气饱和差。  相似文献   

3.
韦小丽  管丽丽 《吉林气象》2015,(2):40-43,48
根据1971-2012年气象、水文资料采用线性趋势分析、Mann-Kendall秩次相关检验和Pearson相关系数方法研究了第二松花江流域潜在蒸散发、实际蒸散发(ETa)以及20cm蒸发皿蒸发量的变化特征及影响的主要气象因子。结果表明:蒸发皿蒸发量表现为明显的下降趋势,潜在蒸发下降趋势不明显,实际蒸发在总体上显著上升,与蒸发皿蒸发、潜在蒸散发的变化趋势相反,很好地验证了互补相关理论。分析气温、降水、风速、云量、实际水汽压、相对湿度和日照时数等的变化趋势及相关关系发现,风速、日照时数和低云量是影响蒸发皿蒸发下降的主要气象因子;平均气温、风速、相对湿度和总云量是影响实际蒸发升高的气象因子;而潜在蒸发的下降主要受日照时数、降水和低云量的影响。  相似文献   

4.
根据互补理论得出了中国科学院珠穆朗玛大气与环境综合观测研究站(珠峰站)的蒸发皿蒸发量和实际蒸散发量之间的关系,结果显示,湿季(7-10月)的ε值(即使潜在蒸发量增加的那部分感热的比例)小于全年的ε值,干季(1-6月,11-12月)的ε值最大。其次,对珠峰站的实际蒸散发量进行了计算,结果显示,在湿季应用互补理论计算得到的实际蒸散发量更加接近于观测值,而干季实际蒸散发量的计算值与观测值的差距比较大。最后,通过研究珠峰站蒸发皿蒸发量和实际蒸散发量分别与风速、气温、相对湿度、净辐射以及降水之间的关系,发现由于蒸发皿蒸发量在干季主要受风速和温度影响,受相对湿度影响比较小,进而随湿度指数没有明显的变化,所以在干季应用互补理论计算得到的实际蒸散发量与观测值的差距比较大。所以互补理论可能比较适用于湿季,在干季并不适用。  相似文献   

5.
基于MOD16产品的科尔沁草原地表蒸散时空变化特征   总被引:1,自引:0,他引:1  
草原是科尔沁地区的主体生态系统,定量研究该地区地表蒸散发对掌握科尔沁草原的生态效应具有重要意义。基于2000—2019年MOD16地表蒸散数据集和气象站点观测数据,探讨分析科尔沁草原地表蒸散的时空变化特征及其气象影响因素。结果表明:(1)MOD16地表蒸散产品在科尔沁草原地区具有较好的适用性,其地表潜在蒸散产品数据与蒸发皿实测数据的决定系数达0.9以上。(2)近20 a科尔沁草原ET与PET均呈现"先升后降"的单峰型月际分布特征,ET的年际波动较PET明显,且ET整体以28.86 mm·(10 a)~(-1)的速率显著增加,增加区域超过研究区的75%,而PET整体则以13.35 mm·(10 a)~(-1)的速率显著减小,但速率增加的区域大于减小的区域。(3)ET高值区集中在科尔沁草原西北部,PET高值区则集中在中部地区,且二者存在一定的反向空间分异特征;不同土地利用类型下地表蒸散不同,ET自林地、草地、农田依次减小,而PET则相反。(4)近20 a科尔沁草原ET分别在2003年和2011年发生由弱至强的突变,而PET则在2015年发生由强至弱的突变,且未来约20%的区域地表实际蒸散可能持续目前的变化趋势。(5)科尔沁草原ET、PET与各气象因子的相关性一致,均与降水量、日照时数呈显著正相关,而与气温、相对湿度、风速等相关性不明显。  相似文献   

6.
蒸散发作为水分平衡的重要组成部分,其变化对于生态和水文具有重要的影响。文章依托锡林郭勒牧业气象试验站,利用大型称重式蒸渗仪的观测数据,分析了2006—2021年典型草原蒸散发的变化特征及其影响因素。结果表明:16年间典型草原年蒸散发总量呈现微弱下降趋势;典型草原蒸散发的变化特征与天然牧草生长进程一致,高蒸散期出现在天然牧草生育旺期;在草地生长季内,生长中期的总蒸散量和日蒸散量最大,生长初期的最小;相对湿度、气温和降水是影响典型草原蒸散发的主要气象因子。  相似文献   

7.
为探求绿洲棉区膜下滴灌条件下不同种植密度棉田蒸散发规律,运用大型称重式蒸渗仪对膜下滴灌棉田蒸散过程连续监测,结果表明:在不同种植密度条件下,棉花的日蒸散量曲线都表现为单峰曲线,不同生育时期一膜六行(30株/m2)种植的棉田蒸散量比一膜四行(20株/m2)大,花铃期棉田的蒸散发强度最大,一膜四行、一膜六行分别为4.76mm/d、5.94mm/d。同时,一膜六行种植的叶面积指数大于一膜四行种植,株高小于一膜四行种植。花铃期棉田的蒸散发量与日平均气温(p<0.01)和空气相对湿度(p<0.01)具有很好的相关性,与日平均风速和日平均水汽压的关系不大。  相似文献   

8.
柴达木盆地属于高寒干旱内陆盆地,水资源短缺,生态环境十分脆弱,蒸散发是生态系统水分耗散的主要方式,研究其变化特征对区域水资源合理开发与生态环境保护具有重要意义。本研究以柴达木盆地灌木林地和高寒草甸为观测点,采用涡动相关仪观测的2020年通量资料计算实际蒸散发量,分析不同下垫面实际蒸散发量在不同时间尺度的变化特征,并探究了气象因子与实际蒸散发量的相关性。结果表明:(1)灌木林地和高寒草甸蒸散发过程主要集中在生长季,呈正态分布,但变化范围有一定差异,高寒草甸实际日蒸散发量和实际月蒸散发量大于灌木林地。其中,灌木林地日平均蒸散发量为0.48 mm,高寒草甸日平均蒸散发量为1.28 mm;灌木林地蒸散发量8月达到峰值,为40.47 mm,高寒草甸蒸散发量7月达到峰值,为88.92 mm。(2)对于不同下垫面,气温和土壤温度变化趋势大致相同,饱和水汽压差和风速有一定差异,实际日蒸散发量与气温、土壤温度、饱和水汽压差显著相关,但是与风速相关性不大,各季节蒸散发量对各气象因子敏感程度不同,此外高寒草甸蒸散发量与土壤含水量呈显著相关。(3)不同下垫面水分消耗变化特征表明灌木林地各月水汽交换以下垫面水分...  相似文献   

9.
珠江流域实际蒸散发的时空变化及影响要素分析   总被引:1,自引:0,他引:1  
采用基于互补相关理论的平流-干旱模型,根据60个气象站1961—2010年气象资料,计算并分析了珠江流域实际蒸散发(ETa)的时空变化特征,通过对实际蒸散发的辐射能量项、空气动力学项与主要气象要素的相关分析,对珠江流域实际蒸散发的时空变化进行了归因研究。结果表明:(1) 珠江流域多年平均实际蒸散发量为665.6 mm/a。1961—2010年,珠江流域实际蒸散发量呈明显的下降趋势,下降幅度为-24.3 mm/(10 a)。夏秋季节实际蒸散发的下降对年际尺度实际蒸散发的下降具有明显的贡献。(2) 珠江流域东南沿海地区年实际蒸散发量较高(大于690 mm),该区年实际蒸散发量呈现显著的下降趋势。流域中部有一条呈东北-西南走向的条带状实际蒸散发低值区,年均实际蒸散发量在630 mm以下,但该区域的时间变化趋势不明显。(3) 气温日较差和日照时数的下降以及大气压的增加使得辐射能量项的下降,是造成实际蒸散发下降的主要原因;平均气温、最高、最低气温的上升使空气动力学项呈现增加趋势,从而在一定程度上贡献于实际蒸散发的下降。春秋冬三季平均风速的下降引起空气动力学项的下降趋势或减缓其增加趋势,反过来在一定程度上减缓了实际蒸散发的下降趋势。   相似文献   

10.
基于海河流域159个气象站1961—2014年逐日气象资料,采用P-M模型计算该地区的参考作物蒸散量(ET0),分析海河流域ET0对平均最高、最低气温及相对湿度、平均风速和日照时数的敏感性,并结合各气象要素的多年相对变化率定量探讨ET0变化的主导因子。结果表明:海河流域年ET0以-22.7 mm·(10 a)-1的速率显著减少,在空间分布上,除流域西北部分地区呈增加趋势外,大部分地区ET0呈显著减少趋势。ET0对各要素的敏感系数除相对湿度外,其他均为正值。综合考虑ET0对各要素的敏感性及各要素的多年相对变化率发现,相对湿度及最高、最低气温是导致ET0增加的因子,平均风速和日照时数则是导致ET0减少的因子。虽然平均风速和日照时数的敏感系数不是最高,但其减小趋势显著,多年相对变化率较大,导致对ET0的贡献较大,成为海河流域ET0变化的主导因子,二者的显著减少造成了整个流域ET0显著减少的事实。  相似文献   

11.
Summary PVA-maxima can be a contributor to upward motion; there-fore cloudiness and precipitation can be expected there. This is investigated from several viewpoints: grey shade evaluations of false colour satellite images are done, frequencies of precipitation events for PVA maxima and grey shade intervals are investigated, precipitation amounts within the PVA maxima path are compared to a surroundings and the predictability from the ECMWF model is proved. Several results could be derived: PVA maxima are accompanied by brighter grey shade intervals and a higher precipitation probability than surrounding areas; for the brightest grey shade intervals a probability for precipitation of 60–70% can be stated; the path of the PVA maxima is an area of more precipitation than in the surroundings; ECMWF forecasts are able to predict the PVA maxima and their location very well but tend to underestimate the precipitation amounts on the PVA maxima path.With 9 Figures  相似文献   

12.
13.
14.
Nelder-Mead Simplex (NMS)算法是一种查找多元函数局地最小值的无微分算法,在现代科学计算中得到广泛应用,该文提出了一种对NMS算法的改进方法.改进后,大大简化了其计算过程,提高了该算法的收敛速度.利用改进后的算法对陆面过程参数进行了拟合计算,结果表明:改进的NMS算法对非线性公式具有非常高的拟合精...  相似文献   

15.
本文以描述某些中尺度系统振幅演变的Schr?dinger方程为例子,着重介绍了直接解法及其在波与波的碰撞相互作用过程中的应用。  相似文献   

16.
云的观测及编报中应注意的几个问题   总被引:1,自引:0,他引:1  
分析了云的观测及编报中易出现的几个习惯性错误及其产生的原因,并提出正确的观测方法,以提高观测记录水平。  相似文献   

17.
2007年5月29-31日,气候变化国际会议(International Conference on Climate Change,ICCC)在中国香港召开。400余位来自全球的自然科学家、社会学家、经济学家、  相似文献   

18.
指出在农业结构调整中要注意资源的稳定性与市场的变化性和农业经济效益与生态效益统一的问题,进而提出种植业结构调整如何适应农业可持续发展和作物种植结构调整的保障措施。  相似文献   

19.
一种动态数据的新建模法及其预报应用   总被引:12,自引:0,他引:12       下载免费PDF全文
文章提出了一种新的动态数据建模法, 利用观测的数据序列, 先用双向差分原理反导出一个非线性常微分方程。 以此作为微分动力核, 然后运用自忆性原理建立预报模式, 我们称之为数据机理自记忆模式(Data-based Mechanism Self-memory Model), 简称为数忆模式, 缩写为 DAMSM。 多个实例计算表明, 数忆模式的预报准确率是比较令人满意的, 给出了长江三角洲夏季降水年际预报的实例。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号