首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
As a result of climate change/variation and its aggravation by human activities over the past several decades, the hydrological conditions in the middle Yellow River in China have dramatically changed, which has led to a sharp decrease of streamflow and the drying up of certain tributaries. This paper simulated and analysed the impact of sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) on hydrological processes, and the study area was located in the 3246 km2 Huangfuchuan River basin. Changes in the hydrological processes were analysed, and periods of natural and disturbed states were defined. Subsequently, the number and distribution of the STDs were determined based on data collected from statistical reports and identified from remote sensing images, and the topological relationships between the STDs and high‐resolution river reaches were established. A hydrological model, the digital Yellow River integrated model, was used to simulate the STD impact on the hydrological processes, and the maximum STD impact was evaluated through a comparison between the simulation results with and without the STDs, which revealed that the interception effect of the STDs contributed to the decrease of the streamflow by approximately 39%. This paper also analysed the relationship between the spatial distribution of the STDs and rainfall in the Huangfuchuan River basin and revealed that future soil and water conservation measures should focus on areas with a higher average annual rainfall and higher number of rainstorm hours. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

3.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

4.
Check dam has become an efficient measure to control sediment transport and soil erosion in the gully areas. It plays an important role in soil erosion control and agricultural production in the Loess Plateau. Due to construction of numerous check dams, it is necessary to assess the impact of check dams on runoff and sediment load at basin scale. This study applied the SWAT model to simulate monthly runoff and sediment load in the Huangfuchuan basin in the middle reaches of the Yellow River. Twenty key check dams are coupled to the SWAT model simulation in the calibration (1978–1984) and validation period (1985–1989). The determination coefficient (R 2) and the Nash–Sutcliffe coefficient (NS) were 0.94 and 0.83 for runoff, and 0.82 and 0.81 for sediment load in the calibration period, respectively. During the validation period, the R 2 and NS were 0.93 and 0.80 for runoff, and 0.90 and 0.83 for sediment load respectively. The results showed that the model simulation was acceptable. Subsequently, the calibrated model was used to examine the effect of check dams on runoff and sediment load between 1990 and 2012. It showed that the increasing check dams contributed 24.8 and 27.7% to the decrease of annual runoff and sediment load during the period of 1990–1999, whereas it reached up to 65.2% for runoff decline and 78.3% for sediment load reduction within 2000–2012. Overall, this study illustrated a case study of the dominant role of check dams on variation of runoff and sediment load in the Huangfuchuan basin.  相似文献   

5.
In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The rtmoff modulus (defined as the annual average discharge per unit area, L/(s·km^2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km^2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m^3/s in August with an average monthly sediment concentration of 88.9 kg/m^3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m^3 and occurs in July, which has an average discharge of 42.6 m^3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye River is largest in February and then decreases until June. In July, the average monthly median grain size of suspended load approaches another peak and decreases until September. Then, the median grain size of suspended load starts to increase until February of the following year. However, the average monthly median grain size of suspended load in the Yellow River at Toudaoguai and Longmen GSs is the smallest between early summer and late fall The median grain size in the Yellow River starts to increase in November and approaches the largest size in January.  相似文献   

6.
Severe soil erosion occurs on the Loess Plateau in China, which makes the Yellow River the most sediment-laden river in the world. Construction of about 60,000 sediment check dams has remarkably controlled soil erosion on the Loess Plateau and reduced the sediment load of the middle and lower Yellow River. Nonetheless, little is known about the mechanism of erosion control and vegetation development of sediment check dams. The function of a single check dam mainly is trapping sediment, while the function of a train of check dams comprising dozens of or over hundreds of check dams in a gully encompasses controlling bed incision and reducing erosion energy. A formula was proposed to calculate the potential energy of bank failure and slope failure in a gully, which essentially constitutes the erosion energy. The erosion energy increases when gully incision occurs, which is induced by the incision of the Yellow River and its tributaries on the Loess Plateau. Sediment deposition in many gullies due to construction of check dams reduces the erosion energy to almost zero, which in turn greatly reduces soil erosion and sediment yield. Construction of check dams promotes vegetation development. The vegetation-erosion dynamics model was used to study the effect of check dams on vegetation development. Simulation results show that reforestation without check dam construction might result in an increase of vegetation cover in the first ten years and then a drop of vegetation cover to less than 10% in the later years. The check dams provide a foundation for vegetation development.  相似文献   

7.
The Kuye River is the primary tributary located in the sediment concentrated regions in the Middle Yellow River in China. Significant decrease in streamflow has been observed in the Kuye River. The non-parametric Mann–Kendall test was applied to detect the change in annual streamflow for the period of 1960 to 2006. Mean annual streamflow in the Kuye River was 84.9 mm from 1960 to 1979 (period I), while it decreased to 58.2 mm from 1980 to 1998 (period II) and 20.5 mm from 1999 to 2006 (period III), respectively. The climate elasticity method and the hydrological modeling method were individually employed to assess the impact of climate variability and human activities on the decrease in streamflow. The results showed that climate variability was responsible for 29.6 and 27.1 % of the streamflow decrease from the climate elasticity method and the hydrological modeling method, respectively; while human activities accounted for 70.4 and 72.9 % of the streamflow decrease in period II. In period III, climate variability contributed 40.9 and 39.3 % of the streamflow decrease from the climate elasticity method and the hydrological modeling method, respectively; while human activities accounted for 59.1 and 60.7 % of the streamflow decrease. Therefore, human activities were the main reason of the streamflow decrease. Soil conservation measures (planting trees, improving pastures, building terraces and sediment-trapping dams) and coal mining led to the streamflow reduction in the Kuye River.  相似文献   

8.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

9.
lCOMPOSITIONOFTHE"92.8"FLOODThreerainstormsoccurredfrom7ththrough13,,,August,1992inShaanxiProvince,diStributingfromnorthtosouthinsequence.Therainfallareacoveredtheregionsofintensivesoilerosion,'wheretheaveragerateoferosionis10,000-15',000ton/kmZ'year.Fig.IshowsisohyetsofrainfallintensityinthecatchmentoftheMiddleYellowRiVerdepictingthedistributionoftherainstormsfrom7thto13,,,August,1992(thehydrologicalBureauYRCC,1992).ThecenterofthefirstrainstormwaslocatedattheYikezhaomengPrefec…  相似文献   

10.
Since 1986, with a sharp decrease in water dis-charges, the Yellow River has entered a period charac-terized by low discharges and seasonally occurring dry-ups[1,2]. Since 1999, more strict management of water diversion has been imposed, and therefore the dry-ups have been well under control. However, the lower reaches of the Yellow River is still predominated by low-discharges, and has become a man-induced shrinking river. In the past 40 years, significant effect of soil and water conservat…  相似文献   

11.
The sediment load on the Chinese Loess Plateau has decreased sharply in recent years. Therefore, it is critical to determine the effects of anthropogenic and climatic factors on the reduction in sediment load. The Huangfuchuan River is the primary tributary in the sediment-rich region of the Loess Plateau in China. This study identified a significant reduction in the sediment load in the Huangfuchuan River basin. The accumulative anomaly method was used to determine the change in annual sediment load from 1960 to 2010. The mean annual sediment load in the Huangfuchuan River was 0.564 × 108 t from 1960 to 1979 (Period I), and it decreased to 0.379 × 108 t between 1980 and 1996 (Period II) and to 0.100 × 108 t between 1997 and 2010 (Period III). Instead of conventional ways, a method that coupled a dynamic water balance model and a back-propagation artificial neural network was employed to separate the contributions of climate variability and human activities on the reduction in sediment load. The results showed that compared to the sediment load in Period I, human activities were responsible for 64.32 and 71.55% of the reductions in sediment load in Periods II and III, respectively, while climatic effects accounted for 35.68 and 28.45% of the reductions in Periods II and III, respectively. The construction of check dams was the main human activity that resulted in the sediment reduction between Periods I and II and accounted for 35.51% of the decrease. Vegetation restoration due to the implementation of the “Grain-to-Green” program was the dominant cause of the reduction in sediment between Periods II and III and caused more than 40.00% of the decrease. The increase of water consumption by humans also contributed the reduction in sediment between Periods II and III in the Huangfuchuan River basin.  相似文献   

12.
《水文科学杂志》2013,58(4):777-792
Abstract

Based on data from five hydrometric stations, Pingshan station on the Jinshajiang River, Gaochang station on the Minjiang River, Wulong station on the Wujiang River, Wusheng station on the Jialingjiang River and Yichang station on the Yangtze River, a study has been made of the temporal variation in grain size of suspended sediment load in the upper Yangtze River. The results show that in the past 40 years, the grain size of the suspended sediment load in the main stem and major tributaries of the upper Yangtze River has had a decreasing trend, that can be explained by the effect of reservoir construction and implementation of soil conservation measures. The reservoirs in the upper Yangtze River Basin, all used for water storage for hydro-electric generation and/or irrigation, have trapped coarse sediment from the drainage area above the dam and, thus, the sediment released now is much finer than before the construction of the reservoirs. The downstream channels are all gravel-bedded or even in bedrock, with little fine sediment, and thus, the released flow can hardly get a supply of fine sediment through eroding the bed. Then, after the downstream adjustment, the grain size of suspended sediment is still fine. Large-scale soil conservation measures have significantly reduced sediment yield in some major sediment source areas. The relatively coarse sediment is trapped and, thus, the sediment delivered to the river becomes finer.  相似文献   

13.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

15.
Abstract

The runoff and sediment of large rivers usually come from different source areas, which make different contributions to the sediment flux into the sea. This has been studied with the example of the Yellow River in China, whose suspended sediment flux into the Bohai Sea accounts for 19.4% of the world total. The drainage basin of this river can be divided into four major water and sediment source areas. The sediment flux into the sea is found to be closely related to the water and sediment from the different source areas in the drainage basin and, accordingly, an empirical regression model has been established to express this relationship. According to this model, in each tonne (t) of sediment from the fine sediment producing area (FSA), 0.85 t (for yearly series) and 0.72 t (for event series) can be transported into the sea; in each tonne of sediment from the coarse sediment producing area (CSA), only 0.21 t (for yearly series) and 0.34 t (for event series) can be transported into the sea. Since the 1970s, the Yellow River's sediment flux into the sea has declined markedly and this reduction can be attributed to a great degree to the soil control measures in the fine sediment producing area. Coupling the models of this study to the previously established models for estimating the impacts of soil control measures on water and sediment balance in the Yellow River basin, a quantitative prediction may be made for the change of sediment flux into the sea that might result from climate change and human activities in the future.  相似文献   

16.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

17.
The method of multiple regression is used to analyze the influences of flood events from the coarse sediment producing areas on the channel siltation and fluvial process of the lower Yellow River based on the flood events from 1950 to 1985. The results showed that the flood events from the coarse sediment producing areas carry larger amounts of sediment load and coarser particle sizes than from other source areas, which increases deposition in the lower river channel. And there exist good correlations between channel siltation of the lower reaches of the Yellow River and the coming water and sediment of flood events from the coarse sediment producing areas. Through these correlations, the amounts of sediment deposition in the lower river channel could be roughly estimated based on the runoff and sediment load of flood events from the coarse sediment producing areas. The sediment deposition caused the fluvial process. There exists a complex response of channel form change to the coming water and sediment load of flood events from the coarse sediment producing areas. When the sediment concentration is smaller than 200kg/m3, the ratio between wide-depth ratio after flood and wide-depth ratio before flood((B/h)a / (B/h)b) will increase with the increase of the maximum sediment concentration; when the sediment concentration is near 200kg/m3, (B/h)a / (B/h)b reaches the maximum value; and when the sediment concentration reaches the limits of hyperconcentrated flow, (B/h)a / (B/h)b will decrease with the increase of the maximum sediment concentration. Generally, flood events from the coarse sediment producing areas made channel form of the lower Yellow River deeper and narrower, but a large amount of sediment deposition simultaneously occurs. So, the impacts of flood events from the coarse sediment producing areas on the channel of the lower Yellow River are lessened.  相似文献   

18.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

19.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The determination of sediment yield in catchments based on the sediment trapped by check dams is becoming a subject of interest.In fact,several methods have been developed in recent years to estimate the sediment retained by check dams.The complexity,precision and accuracy of each method vary greatly.In this study,we evaluate the sediment trapped by check dams comparing the Sections method respect to the Prism,Pyramid,DTMs and Trapezoid methods.We analyzed a sample of 25 check dams(α-1=90%;ε=10%) in the Saldana badlands(Spain).The results showed that the Sections method offered a volume of retained sediment between the others,which gave an absolute variation from 22%to40%.The high variability of the check dam and sediment wedge sizes made necessary to compare methods in groups combining both characteristics.No significant differences in sediment volumes could be found between the methods for very small(height(h):1.8-2.3 m;trapped volume(V):6-102 m~3) or large check dams(h 2.3 m;V:165-387 m~3),while significant differences are found for small(h 1.5 m;V:1-229 m~3) or middle-sized check dams(h:2.2-3.2 m;V:65-235 m3).Nevertheless,volume differences between groups ranged up to + 25%.For these reason,the size of the check dam,the shape of the sediment wedge and the accuracy of the measure methods must considered when selecting an appropriate method to obtain the volume of retained sediment by check dams.A correct estimation of the sediment retention is needed to evaluate the role and efficiency of check dams in restoration projects or to estimate sediment yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号