首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of navigation satellites receivers operate on a single frequency and experience a positioning error due to the ionospheric delay. This can be compensated for using a variety of approaches that are compared in this paper. The study focuses on the last solar maximum. A 4D tomographic imaging technique is used to map the ionospheric electron density over the European region during 2002 and 2003. The electron density maps are then used to calculate the excess propagation delay on the L1 frequency experienced by GPS receivers at selected locations across Europe. The excess delay is applied to correct the pseudo-range single frequency observations at each location and the improvements to the resulting positioning are calculated. The real-time tomographic technique is shown to give navigation solutions that are better than empirical modelling methods and approach the accuracy of the full dual-frequency solution. The improvements in positioning accuracy vary from day to day depending on ionospheric conditions but can be up to 25 m during mid-day during these solar maximum conditions at European mid-latitudes.
Damien J. AllainEmail:
  相似文献   

2.
Kalman-filter-based GPS clock estimation for near real-time positioning   总被引:11,自引:4,他引:7  
In this article, an algorithm for clock offset estimation of the GPS satellites is presented. The algorithm is based on a Kalman-filter and processes undifferenced code and carrier-phase measurements of a global tracking network. The clock offset and drift of the satellite clocks are estimated along with tracking station clock offsets, tropospheric zenith path delay and carrier-phase ambiguities. The article provides a brief overview of already existing near-real-time and real-time clock products. The filter algorithm and data processing scheme is presented. Finally, the accuracy of the orbit and clock product is assessed with a precise orbit determination of the MetOp satellite and compared to results gained with other real-time products.
André HauschildEmail:
  相似文献   

3.
Antenna phase center calibration for precise positioning of LEO satellites   总被引:3,自引:3,他引:3  
Phase center variations of the receiver and transmitter antenna constitute a remaining uncertainty in the high precision orbit determination (POD) of low Earth orbit (LEO) satellites using GPS measurements. Triggered by the adoption of absolute phase patterns in the IGS processing standards, a calibration of the Sensor Systems S67-1575-14 antenna with GFZ choke ring has been conducted that serves as POD antenna on various geodetic satellites such as CHAMP, GRACE and TerraSAR-X. Nominal phase patterns have been obtained with a robotic measurement system in a field campaign and the results were used to assess the impact of receiver antenna phase patterns on the achievable positioning accuracy. Along with this, phase center distortions in the actual spacecraft environment were characterized based on POD carrier phase residuals for the GRACE and TerraSAR-X missions. It is shown that the combined ground and in-flight calibration can improve the carrier phase modeling accuracy to a level of 4 mm which is close to the pure receiver noise. A 3.5 cm (3D rms) consistency of kinematic and reduced dynamic orbit determination solutions is achieved for TerraSAR-X, which presumably reflects the limitations of presently available GPS ephemeris products. The reduced dynamic solutions themselves match the observations of high grade satellite laser ranging stations to 1.5 cm but are potentially affected by cross-track biases at the cm-level. With respect to the GPS based relative navigation of TerraSAR-X/TanDEM-X formation, the in-flight calibration of the antenna phase patterns is considered essential for an accurate modeling of differential carrier phase measurements and a mm level baseline reconstruction.
Oliver MontenbruckEmail:
  相似文献   

4.
The architecture of the ultra-tight GPS/INS/PL integration is the key to its successful performance; the main feature of this architecture is the Doppler feedback to the GPS receiver tracking loops. This Doppler derived from INS, when integrated with the carrier tracking loops, removes the Doppler due to vehicle dynamics from the GPS/PL signal thereby achieving a significant reduction in the carrier tracking loop bandwidth. The bandwidth reduction provides several advantages such as: improvement in anti-jamming performance, and increase in post correlated signal strength which in turn increases the dynamic range and accuracy of measurements. Therefore, any degradation in the derived Doppler estimates will directly affect the tracking loop bandwidth and hence its performance. The quadrature signals from the receiver correlator, I (in-phase) and Q (quadrature), form the measurements, whereas the inertial sensor errors, position, velocity and attitude errors form the states of the complementary Kalman filter. To specify a reliable measurement model of the filter for this type of integrated system, a good understanding of GPS/PL signal characteristics is essential. It is shown in this paper that phase and frequency errors are the variables that relate the measurements and the states in the Kalman filter. The main focus of this paper is to establish the fundamental mathematical relationships that form the measurement model, and to show explicitly how the system error states are related to the GPS/PL signals. The derived mathematical relationships encapsulated in a Kalman filter, are tested by simulation and shown to be valid.
Ravindra Babu (Corresponding author)Email:
Jinling WangEmail:
  相似文献   

5.
Digital mobile mapping, the method that integrates digital imaging with direct geo-referencing, has developed rapidly over the past 15 years. The Kalman filter (KF) is considered an optimal estimation tool for real-time INS/GPS integrated kinematic positioning and orientation determination. However, the accuracy requirements of general mobile mapping applications cannot be easily achieved even when using the KF scheme. Therefore, this study proposes an intelligent scheme combining ANN and RTS backward smoother to overcome the limitations of KF and to enhance the overall accuracy of attitude determination for tactical grade and MEMS INS/GPS integrated systems.
Yun-Wen Huang (Corresponding author)Email:
  相似文献   

6.
Likelihood-based methods for modeling multivariate Gaussian spatial data have desirable statistical characteristics, but the practicality of these methods for massive georeferenced data sets is often questioned. A sampling algorithm is proposed that exploits a relationship involving log-pivots arising from matrix decompositions used to compute the log determinant term that appears in the model likelihood. We demonstrate that the method can be used to successfully estimate log-determinants for large numbers of observations. Specifically, we produce an log-determinant estimate for a 3,954,400 by 3,954,400 matrix in less than two minutes on a desktop computer. The proposed method involves computations that are independent, making it amenable to out-of-core computation as well as to coarse-grained parallel or distributed processing. The proposed technique yields an estimated log-determinant and associated confidence interval.
James P. LeSage (Corresponding author)Email:
  相似文献   

7.
Since the assumption of all stations tracking the same satellites with identical weights was previously employed by Shen and Xu (GPS Solut 12:99–108, 2008) to derive the simplified GNSS single- and double-differenced equivalent equations, this supplementary paper expands these simplified equations in the case of each station tracking different satellites with elevation-dependent weights. Numerical experiments are performed to demonstrate the computational efficiency of the simplified equivalent algorithm relative to the traditional method in various scenarios of multi-baseline solutions with tracking different satellites. The fast computational speed of the simplified equivalent algorithm will potentially benefit the local, regional and even global GNSS multi-baseline solutions as well as the combined GNSS application.
Guochang XuEmail:
  相似文献   

8.
Small-scale irregularities in the background electron density of the ionosphere can cause rapid fluctuations in the amplitude and phase of radio signals passing through it. These rapid fluctuations are known as scintillation and can cause a Global Positioning System (GPS) receiver to lose lock on a signal. This could compromise the integrity of a safety of life system based on GPS, operating in auroral regions. In this paper, the relationship between the loss of lock on GPS signals and ionospheric scintillation in auroral regions is explored. The period from 8 to 14 November 2004 is selected for this study, as it includes both geomagnetically quiet and disturbed conditions. Phase and amplitude scintillation are measured by GPS receivers located at three sites in Northern Scandinavia, and correlated with losses of signal lock in receivers at varying distances from the scintillation receivers. Local multi-path effects are screened out by rejection of low-elevation data from the analysis. The results indicate that losses of lock are more closely related to rapid fluctuations in the phase rather than the amplitude of the received signal. This supports the idea, suggested by Humphreys et al. (2005) (performance of GPS carrier tracking loops during ionospheric scintillations. Proceedings Internationsl Ionospheric Effects Symposium 3–5 May 2005), that a wide loop bandwidth may be preferred for receivers operating at auroral latitudes. Evidence from the Imaging Riometer for Ionospheric Studies (IRIS) appears to suggest that, for this particular storm, precipitation of particles in the D/E regions may be the mechanism that drives the rapid phase fluctuations in the signal.
Robert W. MeggsEmail:
  相似文献   

9.
In Global Navigation Satellite System (GNSS) positioning, the receiver measures the pseudorange with respect to each observable navigation satellite and determines the position and clock bias. In addition to the GPS, several other navigation satellite constellations including Glonass, Galileo and Compass can/will also be used to provide positioning, navigation, and timing information. The paper is concerned with the solvability of the navigation problem when the receiver attempts to process measurements from different constellations. As two different constellations may not be time-synchronized, the navigation problem involves the determination of position of the receiver and clock bias with respect to each constellation. The paper describes an analytic approach to account for the two-constellation navigation problem with three measurements from one constellation and two measurements from another constellation. It is shown that the two-constellation GNSS navigation problem becomes the solving of a set of two simultaneous quadratic equations or, equivalently, a quartic equation. Furthermore, the zero-crossover of the leading coefficient and the sign of the discriminant of the quartic equation are shown to play a significant role in governing the solvability, i.e., the existence and uniqueness of the navigation solutions.
Jyh-Ching JuangEmail:
  相似文献   

10.
A method is presented for estimating the roll and pitch attitude of a small-scaled unmanned helicopter based on the velocity measurements of the global positioning system (GPS). The small-scaled helicopter is a radio controlled (RC) model which is readily available and affordable for academic laboratories as a research platform. Only one single antenna GPS receiver is equipped on the RC helicopter to acquire the velocity measurements needed for the attitude estimation. The velocity information is recorded by the onboard computer for post-processing. An attitude and heading reference system (AHRS) is used to provide the reference attitudes. The required angular rates and heading for this study are also given by the gyroscopes and compass of the AHRS for the sake of system’s simplification. The Kalman filter is applied to estimate the helicopter’s accelerations by using the GPS velocity measurements. The estimated accelerations form the fundamental elements of synthesizing the pseudo-roll and the pseudo-pitch. With some legitimate simplifications and assumptions, the relation between the helicopter’s attitudes and the accelerations estimated from the GPS velocity measurements can be developed. Furthermore, to enhance the accuracy of the pseudo-attitudes, the angular rates acquired from the gyroscopes are incorporated into the estimation algorithm of pseudo-attitudes by using a complementary filter.
Fei-Bin HsiaoEmail:
  相似文献   

11.
A data archive of GPS navigation messages   总被引:2,自引:1,他引:1  
Since 18 June 2007 navigation data messages transmitted by the GPS constellation are recorded by five receivers within GeoForschungsZentrum’s global groundstation network. We describe the recording, processing, validation, analysis and archiving of the navigation data. During the 197 days between 18 June 2007 and 31 December 2007 a total of 125,723,666 subframes were collected. By taking into consideration that the same data set frequently is observed by two or more receivers concurrently, 65,153,955 unique subframes could be extracted from the observations. With an estimated 88,099,200 subframes transmitted by the constellation during this time period a data yield of about 74% was achieved. Simulation studies suggest that with two additional GPS receivers, which are scheduled for addition to the network in 2008, about 95% of the transmitted subframes will be retrieved. The message data archive is open to the scientific community for non-commercial purposes and may be accessed through GFZ’s Information System and Data Center ().
G. BeyerleEmail:
  相似文献   

12.
A constrained LAMBDA method for GPS attitude determination   总被引:4,自引:0,他引:4  
An improved method to obtain fixed integer ambiguity in GPS attitude determination is presented. Known conditions are utilized as constraints to acquire attitude information when the float solution and its variance–covariance matrix are not accurate enough. The searching ellipsoidal region is first expanded to compensate for errors caused by the inaccurate float solution. Then the constraints are used to shrink the region to a proper size, which maintains the true integer ambiguity. Experimental results demonstrate that this scheme gives a fast search time and a higher success rate in determining the fixed integer ambiguity than the unconstrained method. The accuracy of attitude angles is also improved.
Bo WangEmail:
  相似文献   

13.
This study adopts the Chiu-fen-erh-shan landslide as a case study for incorporating comprehensive accelerograph and global positioning system (GPS) data to determine the best-fit acceleration data for analyzing a rock avalanche. Previous investigations indicate that the distance from an accelerograph to a landslide site is crucial to determining the best-fit acceleration data to use in conducting a seismic analysis. Unfortunately, the Chiu-fen-erh-shan landslide and its nearest accelerograph station are located in different geological zones. Thus, GPS data were compared to the displacements derived from the accelerograms of nearby monitoring stations to help select the best accelerograph data. This emphasizes that a high density distribution of accelerographs and GPS installations are essential to acquire the best data for the seismic analysis, especially in complex geological zones. After applying the best-fit accelerogram to Newmark’s sliding model and an empirical displacement attenuation formula to back-calculate the shear strength parameters of the sliding surface, a cohesion of 0 kPa and friction angle of the sliding surface of 24.8° were found for this landslide.
Jian-Hong WuEmail: Email:
  相似文献   

14.
Identifying barriers of species and characterize their effects on spatial distribution provide essential information to research in landscape genetics. We propose a weighted difference barrier (WDB) method as an alternative to maximum difference barriers (MDB), and to initiate and integrate more spatial modeling and methods into the problem solving process. Overall, WDB provides quick and straightforward improvements to the drawbacks of MDB. WDB integrates more sample location relationships into the barrier construction and reveals potential barriers that would otherwise go undetected. WDB incorporates both within group and between group genetic information, and delineates the barriers as a more complex pattern.
John RadkeEmail:
  相似文献   

15.
Continuously operating reference stations (CORS) are increasingly used to deliver real-time and near-real-time precise positioning services on a regional basis. A CORS network-based data processing system uses either or both of the two types of measurements: (1) ambiguity-resolved double-differenced (DD) phase measurements, and (2) phase bias calibrated zero-differenced (ZD) phase measurements. This paper describes generalized, network-based geometry-free models for three carrier ambiguity resolution (TCAR) and phase bias estimation with DD and ZD code and phase measurements. First, the geometry-free TCAR models are constructed with two Extra-Widelane (EWL)/Widelane (WL) virtual observables to allow for rapid ambiguity resolution (AR) for DD phase measurements without distance constraints. With an ambiguity-resolved WL phase measurement and the ionospheric estimate derived from the two EWL observables, an additional geometry-free equation is formed for the third virtual observable linearly independent of the previous two. AR with the third geometry-free model requires a longer period of observations for averaging than the first two, but is also distance-independent. A more general formulation of the geometry-free model for a baseline or network is also introduced, where all the DD ambiguities can be more rigorously resolved using the LAMBDA method. Second, the geometry-free models for calibration of three carrier phase biases of ZD phase measurements are similarly defined for selected virtual observables. A network adjustment procedure is then used to improve the ZD phase biases with known DD integer constraints. Numerical results from experiments with 24-h dual-frequency GPS data from three US CORS stations baseline lengths of 21, 56 and 74 km confirm the theoretical predictions concerning AR reliability of the network-based geometry-free algorithms.
Chris RizosEmail:
  相似文献   

16.
Since before the inception of work by Okabe, the intermingling of spatial autocorrelation (i.e., local distance and configuration) and distance decay (i.e., global distance) effects has been suspected in spatial interaction data. This convolution was first treated conceptually because technology and methodology did not exist at the time to easily or fully address spatial autocorrelation effects within spatial interaction model specifications. Today, however, sufficient computer power coupled with eigenfunction-based spatial filtering offers a means for accommodating spatial autocorrelation effects within a spatial interaction model for modest-sized problems. In keeping with Okabe’s more recent efforts to dissemination spatial analysis tools, this paper summarizes how to implement the methodology utilized to analyze a particular empirical flows dataset.
Daniel A. GriffithEmail:
  相似文献   

17.
This study focuses on accommodating spatial dependency in data indexed by geographic location. In particular, the emphasis is on accommodating spatial error correlation across observational units in binary discrete choice models. We propose a copula-based approach to spatial dependence modeling based on a spatial logit structure rather than a spatial probit structure. In this approach, the dependence between the logistic error terms of different observational units is directly accommodated using a multivariate logistic distribution based on the Farlie-Gumbel-Morgenstein (FGM) copula. The approach represents a simple and powerful technique that results in a closed-form analytic expression for the joint probability of choice across observational units, and is straightforward to apply using a standard and direct maximum likelihood inference procedure. There is no simulation machinery involved, leading to substantial computation gains relative to current methods to address spatial correlation. The approach is applied to teenagers’ physical activity participation levels, a subject of considerable interest in the public health, transportation, sociology, and adolescence development fields. The results indicate that failing to accommodate heteroscedasticity and spatial correlation can lead to inconsistent and inefficient parameter estimates, as well as incorrect conclusions regarding the elasticity effects of exogenous variables.
Ipek N. SenerEmail:
  相似文献   

18.
Analysis of high-frequency multipath in 1-Hz GPS kinematic solutions   总被引:1,自引:1,他引:0  
High-frequency multipath would be problematic for studies at seismic or antenna dynamical frequencies as one could mistakenly interpret them as signals. A simple procedure to identify high-frequency multipath from global positioning system (GPS) time series records is presented. For this purpose, data from four GPS base stations are analyzed using spectral analyses techniques. Additional data, such as TEQC report files of L1 pseudorange multipath, are also used to analyze the high-frequency multipath and confirmation of the high-frequency multipath inferred from the phase records. Results show that this simple procedure is effective in identification of high-frequency multipath. The inferred information can aid interpretation of multipath at the GPS site, and is important for a number of reasons. For example, the information can be used to study GPS site selections and/or installations.
Clement OgajaEmail:
  相似文献   

19.
Troposphere zenith path delays derived from the Global Data Assimilation System (GDAS) numerical weather model (NWM) are compared with those of the International GNSS Service (IGS) solutions over a 1.5-year period at 18 globally distributed IGS stations. Meteorological parameters can be interpolated from the NWM model at any location and at any time after December 2004. The meteorological parameters extracted from the NWM model agree with in situ direct measurements at some IGS stations within 1 mbar for pressure, 3° for temperature and 13% for relative humidity. The hydrostatic and wet components of the zenith path delay (ZPD) are computed using the meteorological parameters extracted from the NWM model. The total ZPDs derived from the GDAS NWM agree with the IGS ZPD solutions at 3.0 cm RMS level with biases of up to 4.5 cm, which can be attributed to the wet ZPDs estimates from the NWM model, considering the less accurate interpolated relative humidity parameter. Based on this study, it is suggested that the availability and the precision of the GDAS NWM ZPD should be sufficient for nearly all GPS navigation solutions.
Constantin-Octavian AndreiEmail:
  相似文献   

20.
Show me the code: spatial analysis and open source   总被引:3,自引:1,他引:2  
This paper considers the intersection of academic spatial analysis with the open source revolution. Its basic premise is that the potential for cross-fertilization between the two is rich, yet some misperceptions about these two communities pose challenges to realizing these opportunities. The paper provides a primer on the open source movement for academicians with an eye towards correcting these misperceptions. It identifies a number of ways in which increased adoption of open source practices in spatial analysis can enhance the development of the next generation of tools and the wider practice of scientific research and education.
Sergio J. ReyEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号