首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New techniques for improving both the computational and imaging performance of the three-dimensional (3-D) electromagnetic inverse problem are presented. A non-linear conjugate gradient algorithm is the framework of the inversion scheme. Full wave equation modelling for controlled sources is utilized for data simulation along with an efficient gradient computation approach for the model update. Improving the modelling efficiency of the 3-D finite difference (FD) method involves the separation of the potentially large modelling mesh, defining the set of model parameters, from the computational FD meshes used for field simulation. Grid spacings and thus overall grid sizes can be reduced and optimized according to source frequencies and source–receiver offsets of a given input data set. Further computational efficiency is obtained by combining different levels of parallelization. While the parallel scheme allows for an arbitrarily large number of parallel tasks, the relative amount of message passing is kept constant. Image enhancement is achieved by model parameter transformation functions, which enforce bounded conductivity parameters and thus prevent parameter overshoots. Further, a remedy for treating distorted data within the inversion process is presented. Data distortions simulated here include positioning errors and a highly conductive overburden, hiding the desired target signal. The methods are demonstrated using both synthetic and field data.  相似文献   

2.
I present a 2-D numerical-modelling algorithm based on a first-order velocity-stress hyperbolic system and a non-rectangular-grid finite-difference operator. In this method the velocity and stress are defined at different nodes for a staggered grid. The scheme uses non-orthogonal grids, thereby surface topography and curved interfaces can be easily modelled in the seismic-wave-propagation stimulation. The free-surface conditions of complex geometry are achieved by using integral equilibrium equations on the surface, and the stability of the free-surface conditions is improved by introducing local filter modification. The method incorporates desirable qualities of the finite-element method and the staggered-grid finite-difference scheme, which is of high accuracy and low computational cost.  相似文献   

3.
A quadrangle-grid velocity–stress finite difference method, based on a first-order hyperbolic system that is equivalent to Biot's equations, is developed for the simulation of wave propagation in 2-D heterogeneous porous media. In this method the velocity components of the solid material and of the pore fluid relative to that of the solid, and the stress components of three solid stresses and one fluid pressure are defined at different nodes for a staggered non-rectangular grid. The scheme uses non-orthogonal grids, allowing surface topography and curved interfaces to be easily modelled in the numerical simulation of seismic responses of poroelastic reservoirs. The free-surface conditions of complex geometry are achieved by using integral equilibrium equations on the surface, and the source implementations are simple. The algorithm is an extension of the quadrangle-grid finite difference method used for elastic wave equations.  相似文献   

4.
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.  相似文献   

5.
We present an adaptive unstructured triangular grid finite element approach for effectively simulating plane-wave diffusive electromagnetic fields in 2-D conductivity structures.
The most striking advantage of irregular grids is their potential to incorporate arbitrary geometries including surface and seafloor topography. Adaptive mesh refinement strategies using an a posteriori error estimator yield most efficient numerical solutions since meshes are only refined where required.
We demonstrate the robustness of this approach by comparison with analytical solutions and previously published numerical simulations. Maximum errors may systematically be reduced to, for example, 0.8 per cent for the apparent resistivity and 0.2° in the phase.
An additional accuracy study of the thickness of the air layer in E-polarization suggests to keep a minimum thickness depending on lateral conductivity contrasts within the earth.
Furthermore, we point out the new quality and flexibility of our simulation technique by addressing two marine magnetotelluric applications. In the first case, we discuss topographic effects associated with a synthetic sinusoidal sea bottom model and in the second case, we show a close-to-reality scenario using real bathymetry data from the East Pacific Rise at 17°S.  相似文献   

6.
Topographic effects due to irregular surface terrain may prevent accurate interpretation of magnetotelluric (MT) data. Three-dimensional (3-D) topographic effects have been investigated for a trapezoidal hill model using an edge finite-element method. The 3-D topography generates significant MT anomalies, and has both galvanic and inductive effects in any polarization. This paper presents two different correction algorithms, which are applied to the impedance tensor and to both electric and magnetic fields, respectively, to reduce topographic effects on MT data. The correction procedures using a homogeneous background resistivity derived from a simple averaging method effectively decrease distortions caused by surface topography, and improve the quality of subsurface interpretation. Nonlinear least-squares inversion of topography-corrected data successfully recovers most of structures including a conductive or resistive dyke.  相似文献   

7.
The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.  相似文献   

8.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

9.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

10.
Elastic finite element models are applied to investigate the effects of topography and medium heterogeneities on the surface deformation and the gravity field produced by volcanic pressure sources. Changes in the gravity field cannot be interpreted only in terms of gain of mass disregarding the ground deformation of the rocks surrounding the source. Contributions to gravity changes depend also on surface and subsurface mass redistribution driven by dilation of the volcanic source. Both ground deformation and gravity changes were firstly evaluated by solving a coupled axisymmetric problem to estimate the effects of topography and medium heterogeneities. Numerical results show significant discrepancies in the ground deformation and gravity field compared to those predicted by analytical solutions, which disregard topography, elastic heterogeneities and density subsurface structures. With this in mind, we reviewed the expected gravity changes accompanying the 1993–1997 inflation phase on Mt Etna by setting up a fully 3-D finite element model in which we used the real topography, to include the geometry, and seismic tomography, to infer the crustal heterogeneities. The inflation phase was clearly detected by different geodetic techniques (EDM, GPS, SAR and levelling data) that showed a uniform expansion of the overall volcano edifice. When the gravity data are integrated with ground deformation data and a coupled FEM modelling was solved, a mass intrusion could have occurred at depth to justify both ground deformation and gravity observations.  相似文献   

11.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   

12.
GIS技术支持下的洪水模型建模   总被引:11,自引:4,他引:11  
在复杂区域建立洪水模型时,计算网格的手工生成方法容易出错甚至不可行,自动生成算法则可大大节省计算网格生成的工作量。洪水模型中的计算网格与GIS栅格数据及不规则三角网空间数据结构非常相似,因此,GIS中成熟的网格自动生成算法可用于生成洪水模型计算网格。文章详细讨论了GIS支持下的洪水模型自动建立步骤,并以黄河下游花园口~夹河滩河段为例,利用地形图、土地利用图、水利工程设施分布、水文站点图等资料,通过自动生成网格及其空间拓扑关系,建立了洪水过程数值模拟模型,并详细解释了计算网格数据格式。  相似文献   

13.
Summary. We obtain stresses for Newtonian viscous flow in simple geometries (e.g. corner flow, bending flow) in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/ r 2; for a step function velocity, stress goes as 1/ r ; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/ r singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries.
Topography and seismicity data from northern Honshu, Japan, were used to construct a finite element model, with flow assumed constant speed and tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography. There is poor agreement. Purely viscous models of subducting slabs with simple, geometrically consistent velocity boundary conditions do not predict normal stress patterns compatible with observed topography. Elasticity and plasticity appear to be important in determining trench topography.  相似文献   

14.
We develop a Galerkin finite element boundary integral equation method (GaBIEM) for spontaneous rupture propagation problems for a planar fault embedded in a homogeneous full 2-D space. A 2-D antiplane rupture propagation problem, with a slip-weakening friction law, is simulated by the GaBIEM. This method allows one to eliminate the strong singularities from the integral representation of the traction, and to separate explicitly the expression for the traction into an instantaneous component; static and time-dependent components with weakly (logarithmic) singular kernels; and a dynamic component and a quasi-static component, with continuous, bounded, kernels. Simulated results throw light into the performance of the GaBIEM and highlight differences with respect to that of the traditional, collocation, boundary integral equation method (BIEM). Both methods converge with a power law with respect to grid size, with different exponents. There is no restriction on the CFL stability number for the GaBIEM since an implicit, unconditionally stable method is used for the time integration. The error of the approximation increases with the time step, as expected, and it can remain below that of the BIEM.  相似文献   

15.
We suggest methods for the analysis of the spatial distribution of plant species in a research area divided into a quadrat lattice. In particular, information about the topography and the spaces without plants is used for the analysis. At sites with a homogeneous substratum, we classify the topography by whether a target grid is concave or convex with respect to a standard surface of altitude. At other sites, we classify the topography according to whether the grid is located at the edge of rock and/or at a water pool. Information about the topography and the plant existence is used for constructing 2 × 2 contingency tables. In order to determine the strength of dependence between the topography and plant existence, the Akaike information criterion (AIC) is used. The methods are applied to data of the microtopography and distribution of mosses in continental Antarctica.  相似文献   

16.
基于栅格的分布式降雨径流模拟系统及应用   总被引:6,自引:5,他引:1  
研制了一套基于栅格的分布式降雨径流模拟系统,利用流域地形、土壤、土地利用等空间数据和水文气象数据,可以进行流域特征提取、空间数据内插、降雨径流模拟及计算结果的三维动态显示和统计。通过在黄土岭流域的应用,说明该系统具有较好的模拟降雨径流过程的能力,而且使用方便。  相似文献   

17.
The diffraction of P, S and Rayleigh waves by 3-D topographies in an elastic half-space is studied using a simplified indirect boundary element method (IBEM). This technique is based on the integral representation of the diffracted elastic fields in terms of single-layer boundary sources. It can be seen as a numerical realization of Huygens principle because diffracted waves are constructed at the boundaries from where they are radiated by means of boundary sources. A Fredholm integral equation of the second kind for such sources is obtained from the stress-free boundary conditions. A simplified discretization scheme for the numerical and analytical integration of the exact Green's functions, which employs circles of various sizes to cover most of the boundary surface, is used.
The incidence of elastic waves on 3-D topographical profiles is studied. We analyse the displacement amplitudes in the frequency, space and time domains. The results show that the vertical walls of a cylindrical cavity are strong diffractors producing emission of energy in all directions. In the case of a mountain and incident P, SV and SH waves the results show a great variability of the surface ground motion. These spatial variations are due to the interference between locally generated diffracted waves. A polarization analysis of the surface displacement at different locations shows that the diffracted waves are mostly surface and creeping waves.  相似文献   

18.
Hybrid terrains are a convenient approach for the representation of digital terrain models, integrating heterogeneous data from different sources. In this article, we present a general, efficient scheme for achieving interactive level-of-detail rendering of hybrid terrain models, without the need for a costly preprocessing or resampling of the original data. The presented method works with hybrid digital terrains combining regular grid data and local high-resolution triangulated irregular networks. Since grid and triangulated irregular network data may belong to different datasets, a straightforward combination of both geometries would lead to meshes with holes and overlapping triangles. Our method generates a single multiresolution model integrating the different parts in a coherent way, by performing an adaptive tessellation of the region between their boundaries. Hence, our solution is one of the few existing approaches for integrating different multiresolution algorithms within the same terrain model, achieving a simple interactive rendering of complex hybrid terrains.  相似文献   

19.
We derive a set of non-hypersingular boundary integral equations, both elastodynamic and elastostatic, for the analysis of arbitrarily shaped 2-D anti-plane and in-plane cracks located in an infinite homogeneous isotropic medium, rendered in a unified nomenclature for all cases. The hypersingularities that appear in the usual formulations for the dynamic cases, existent both at the source point and at the wavefront, are removed by way of a regularization technique based on integration by parts. The equations for the in-plane cases are presented in terms of a local Cartesian coordinate system, one of the axes of which is always held locally tangential to the crack trace. The expressions for the elastic field at any point on the model plane are also given.
Our formulations are shown to yield accurate numerical results, as long as appropriate stabilization measures are taken in the numerical scheme. The numerical applicability of our method to non-planar crack problems is illustrated by simulations of dynamic growth of a hackly crack which has small off-plane side-branches. The results imply that the branching of a crack brings about a significant decrease in the crack-tip stress concentration level and consequently may play an essential role in the arrest of earthquake rupturing.  相似文献   

20.
We present a new 2-D analytical solution of the fourth-order differential equation, which describes the flexure of a thin elastic plate.
The new analytical solution allows the differential equation for an elastic plate to be solved for any irregular shaped topography with a high spatial resolution. We apply the new method to the Central Andes. The flexural rigidity distribution calculated by this technique correlates well with tectonic units and the location of fault zones, for example, the Central Andean Gravity High correlates with the presence of a rigid, high-density body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号