首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
This paper presents a new interpretation of the sequence of events in Glen Roy and vicinity during the Loch Lomond Stadial that can be inferred from a detailed varve record constructed by Palmer et al. (2010). 300 years of Younger Dryas glacier advance in the Scottish Highlands are recorded by very thin varves formed in an ice-dammed lake up to 35 km long. At a varve site now occupied by Loch Laggan the lake stood permanently at 260 m, but in Glen Roy varves were also laid down in a lake at 325 m and, later, 350 m caused by glacier advance. Initial ice retreat recorded by a gradual increase in varve thickness was soon followed by much thicker varves. The varve sequences are interrupted by a sand bed caused by sudden drainage of the 350 m lake. The major varves of the Glen Roy sequence show that storminess was still increasing in intensity at least 160 years after glacier retreat had begun. At the Loch Laggan site 15 cm of deformed sediments register an earthquake that produced 3 m faulted uplift of all three Glen Roy shorelines, a response to the abrupt removal of 5 km3 of water when the 260 m lake was catastrophically drained by jökulhlaup. The deformed sediments are immediately followed by varves deposited in a local lake, ice-dammed lake sedimentation now having ceased, having lasted more than 460 years.  相似文献   

2.
《Quaternary Science Reviews》2007,26(1-2):130-141
Analyses of sediment cores from Marcella Lake, a small, hydrologically closed lake in the semi-arid southwest Yukon, provides effective moisture information for the last ∼4500 years at century-scale resolution. Water chemistry and oxygen isotope analyses from lakes and precipitation in the region indicate that Marcella Lake is currently enriched in 18O by summer evaporation. Past lake water values are inferred from oxygen isotope analyses of sedimentary endogenic carbonate in the form of algal Charophyte stem encrustations. A record of the δ18O composition of mean annual precipitation at Jellybean Lake, a nearby evaporation-insensitive system, provides data of simultaneous δ18O variations related to decade-to-century scale shifts in Aleutian Low intensity/position. The difference between the two isotope records, Δδ, represents 18O-enrichment in Marcella Lake water caused by summer effective moisture conditions. Results indicate increased effective moisture between ∼3000 and 1200 cal BP and two marked shifts toward increased aridity at ∼1200 and between 300 and 200 cal BP. These prominent late Holocene changes in effective moisture occurred simultaneously with changes in Aleutian Low circulation patterns over the Gulf of Alaska indicated by Jellybean Lake. The reconstructed climate patterns are consistent with the topographically controlled climatic heterogeneity observed in the coastal mountains and interior valleys of the region today.  相似文献   

3.
Lake Van is the fourth largest terminal lake in the world (volume 607 km3, area 3570 km2, maximum depth 460 m), extending for 130 km WSW–ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, has the potential to obtain a long and continuous continental sequence that covers several glacial–interglacial cycles (ca 500 kyr). Therefore, Lake Van is a key site within the International Continental Scientific Drilling Program (ICDP) for the investigation of the Quaternary climate evolution in the Near East (‘PALEOVAN’). As preparation for an ICDP drilling campaign, a site survey was carried out during the past years. We collected 50 seismic profiles with a total length of ~850 km to identify continuous undisturbed sedimentary sequences for potential ICDP locations. Based on the seismic results, we cored 10 different locations to water depths of up to 420 m. Multidisciplinary scientific work at positions of a proposed ICDP drill site included measurements of magnetic susceptibility, physical properties, stable isotopes, XRF scans, and pollen and spores. This core extends back to the Last Glacial Maximum (LGM), a more extended record than all the other Lake Van cores obtained to date. Both coring and seismic data do not show any indication that the deepest part of the lake (Tatvan Basin, Ahlat Ridge) was dry or almost dry during past times. These results show potential for obtaining a continuous undisturbed, long continental palaeoclimate record. In addition, this paper discusses the potential of ‘PALEOVAN’ to establish new results on the dynamics of lake level fluctuations, noble gas concentration in pore water of the lake sediment, history of volcanism and volcanic activities based on tephrostratigraphy, and paleoseismic and earthquake activities.  相似文献   

4.
《Quaternary Science Reviews》2007,26(3-4):287-299
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events.  相似文献   

5.
Carolina bays are nearly ubiquitous along ~ 1300 km of the North American Atlantic Coastal Plain, but relatively few bays have been examined in detail, making their formation and evolution a topic of controversy. The Lake Mattamuskeet basin, eastern North Carolina, USA, is a conglomeration of multiple Carolina bays that form a > 162 km2 lake. The eastern shoreline of the lake is made up of a 2.9-km-wide plain of parabolic ridges that recorded rapid shoreface progradation. The lower shoreface deposit contains abundant charcoal beds and laminae dated 6465–6863 cal yr BP, corresponding with initiation of a lacustrine environment in the eastern part of the lake. A core from the western part of the lake sampled a 1541–1633 cal yr BP charcoal bed at the base of the lacustrine unit, indicating formation of this part of the basin postdates the eastern basin. Lake Mattamuskeet has no relationship to the Younger Dryas or a linked impact event because rim accretion significantly postdates 12,000 cal yr BP. The shoreline progradation, and association of charcoal beds with the oldest lake sediment in both main parts of the basin, suggest that fire and subsequent hydrodynamic processes were associated with initial formation of these Carolina bays.  相似文献   

6.
《Sedimentary Geology》2007,193(1-4):131-148
This paper characterises the sedimentary impact of a glacial outburst flood or ‘jökulhlaup’ on an ice-contact delta topset at Russell Glacier, Kangerlussuaq, west Greenland. Rapid drainage of an ice-dammed lake in July 1987 generated a jökulhlaup with a peak discharge of ∼ 1300 m3 s 1, which drained across a 500-m-wide, 200-m-long, delta top into a proglacial lake. The delta topset comprises boulder clusters, ice block obstacle marks with relief of up to 4 m, and is graded to lake levels up to 6 m higher than those during typical non-jökulhlaup conditions. The delta top was dissected by the 1987 jökulhlaup causing a fan-shaped extension of the delta front by 30 m. Surface grain size on the delta decreases rapidly away from the main flood flow direction, reflecting rapid downstream reduction in sediment transport capacity. The 1987 jökulhlaup was predominantly fluidal and turbulent and had peak stream powers of 2846 W m 2 proximally and < 400 W m 2 distally. Delta topset sedimentation can be characterised by four lithofacies associations in order of decreasing flow energy: (A) coarse-grained deposits related to a flow expansion; (B) finer-grained peripheral deposits located at the margins of the main flow; (C) lobate bars and delta fronts deposited within distal locations and (D) fine-grained deposits at distance from the delta front associated with slackwater conditions. Jökulhlaup-dominated delta topsets are controlled by the geometry of the channel expansion into the proglacial lake, jökulhlaup hydrograph form, the sediment availability and character, proglacial lake basin depth and surface area, lake outflow spillway erodibility and cross-sectional area, and history of previous jökulhlaups.  相似文献   

7.
《Applied Geochemistry》2006,21(1):134-151
Freshwater Lake Ulubat (c. 1.5 m deep and c. 138 km2) receives sediment from a 10.414 km2 area in the seismically active Susurluk Drainage Basin (SDB) of NW Turkey. The B and trace element contents of the lake infill seem to be a link between the fresh landforms of the SDB and the lacustrine sediment. Deposition in Lake Ulubat has been 1.60 cm a−1 for the last 50 a according to radionucleides; however the sedimentation rate over the last millennium was 0.37 cm a−1 based on 14C dating. The B content of the lacustrine infill displays a slight increase at 0.50 m and a drastic increase at 4 m depth occurring c. 31 a and c. 1070 a ago, respectively. Probably the topmost change corresponds to the start of open mining in the SDB and the second one to the natural trenching of borate ore-deposits. These dates also show indirectly a 1.4 cm a−1 erosion rate during the last millennium as the borate beds were trenched up to 15 m. By extrapolation, it is possible to establish that the formation of some of the present morphological features of the southern Marmara region, especially river incision, began in the late Pleistocene, and developed especially over the last 75 ka.  相似文献   

8.
Lake sediments from four sites in the southwest Yukon Territory, Canada, provided paleotemperature records for the past 2000 yr. An alpine and a forest site from the southeastern portion of the study area, near Kluane Lake, and another alpine-forest pair of lakes from the Donjek River area located to the northwest yielded chironomid records that were used to provide quantitative estimates of mean July air temperature. Prior to AD 800, the southwest Yukon was relatively cool whereas after AD 800 temperatures were more variable, with warmer conditions between ~ AD 1100 and 1400, cooler conditions during the Little Ice Age (~ AD 1400 to 1850), and warming thereafter. These records compare well with other paleoclimate evidence from the region.  相似文献   

9.
Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.  相似文献   

10.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

11.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

12.
Physical evidence for the drainage of glacial lakes remains relatively rare in depositional records, giving rise to much debate on the location of outlets and discharge pathways, as well as on the climate impact of the attendant meltwater forcing. Lake Ojibway developed following the withdrawal of the Laurentide Ice Sheet in northern Ontario and Quebec, Canada. The late‐stage evolution of this large ice‐dammed lake was influenced by the complex dynamics of the retreating ice margin, which highly complicates the identification of the termination of Lake Ojibway in glaciolacustrine sediment records. Here, we document the composition of sections of rhythmites that contain in their upper part an anomalously thick and whitish bed (10–15 cm) that is in turn overlain by ~1 m of faintly bedded rhythmites. Grain‐size analyses showed that the thick whitish bed consists primarily of fine to coarse silt (2–63 μm), contrasting with the lower and upper rhythmites that are largely dominated by clay (<2 μm). The detrital carbonate content of the thick silt bed is characterized by consistently high values (2.5 to 2.8%), whereas the bounding rhythmites show lower and highly variable values. Oxygen isotope measurements further show a marked change going from typical glacial meltwater values (~ ?29.6 to ?27.7‰; VSMOW) for the lower rhythmites and the silt bed to modern‐like meteoric values (?18.4 to ?14.6‰) for the uppermost rhythmites. These data suggest that this marker bed may be associated with a major drawdown event that possibly corresponds to the final drainage of Lake Ojibway. AMS radiocarbon dating of ostracods extracted from the drainage bed also documents an important hardwater effect within the Ojibway basin.  相似文献   

13.
《Quaternary Research》2014,81(3):445-451
Some scholars have argued that the formation and outburst of an ancient dammed lake in the Jishi Gorge at ca. 3700 cal yr BP resulted in the destruction of Lajia, the site of a famous prehistoric disaster in the Guanting Basin, upper Yellow River valley, China. However, the cause of the dammed lake and the exact age of the dam breaching are still debated. We investigated ancient landslides and evidence for the dammed lake in the Jishi Gorge, including dating of soil from the shear zone of an ancient landslide, sediments of the ancient dammed lake, and loess above lacustrine sediments using radiocarbon and optically stimulated luminescence (OSL) dating methods. Six radiocarbon dates and two OSL dates suggested that the ancient landslides and dammed lake events in the Jishi Gorge probably occurred around 8100 cal yr BP, and the ancient dammed lake was breached between 6780 cal yr BP and 5750 cal yr BP. Hence, the outburst of the ancient dammed lake in the Jishi Gorge was unrelated to the ruin of the Lajia site, but likely resulted in flood disasters in the Guanting Basin around 6500 cal yr BP.  相似文献   

14.
《Quaternary Science Reviews》2005,24(12-13):1479-1498
Multiple peat-silt couplets preserved in tidal marsh sediment sequences suggest that numerous great plate boundary earthquakes caused the coast around Cook Inlet, Alaska, to subside over the past 3500 years. Field and laboratory analyses of the two youngest couplets record the well-documented earthquake of AD 1964 and the penultimate one, approximately 850 cal yr BP. Diatom assemblages from a range of modern day estuarine environments from tidal flat through salt marsh to acidic bog produce quantitative diatom transfer function models for elevation reconstructions based on fossil samples. Only nine out of 124 fossil assemblages analysed, including previously published data for the AD 1964 earthquake, have a poor modern analogue. Calibration of fossil samples indicate co-seismic subsidence of 1.50±0.32 m for AD 1964, similar to measurements taken after the earthquake, and 1.45±0.34 m for the ∼850 cal yr BP earthquake. Elevation standard errors for individual fossil samples range from ∼0.08 m in peat layers to ∼0.35 m in silt units. Lack of a chronology within fossil silt units prevents identification of changes in the rate of recovery and land uplift between the post-seismic and inter-seismic periods. However, preservation of multiple peat-silt couplets indicates no net emergence over multiple earthquake cycles. Glacio-isostatic movements from Little Ice Age glacier advance and retreat explains a ∼0.15 m relative sea-level oscillation recorded within the peat layer subsequently submerged as a result of the AD 1964 earthquake. Before both this and the ∼850 cal yr BP earthquake, diatom assemblages suggest pre-seismic relative sea-level rise of ∼0.12±0.13 m, representing possible precursors to great earthquakes.  相似文献   

15.
The distribution of hominin fossil sites in the Turkana Basin, Kenya is intimately linked to the history of the Omo River, which affected the paleogeography and ecology of the basin since the dawn of the Pliocene. We report new geological data concerning the outlet channel of the Omo River between earliest Pliocene and final closure of the Turkana Basin drainage system in the latest Pliocene to earliest Quaternary. Throughout most of the Pliocene the Omo River entered the Turkana Basin from its source in the highlands of Ethiopia and exited the eastern margin of the basin to discharge into the Lamu embayment along the coast of the Indian Ocean. During the earliest Pliocene the river’s outlet was located in the northern part of the basin, where a remnant outlet channel is preserved in basalts that pre-date eruption of the Gombe flood basalt between 4.05 and 3.95 Ma. The outlet channel was faulted down to the west prior to 4.05 Ma, forming a natural dam behind which Lake Lonyumun developed. Lake Lonyumun was drained between 3.95 and 3.9 Ma when a new outlet channel formed north of Loiyangalani in the southeastern margin of the Turkana Basin. That outlet was blocked by Lenderit Basalt lava flows between 2.2 and 2.0 Ma. Faulting that initiated either during or shortly after eruption of the Lenderit Basalt closed the depression that is occupied by modern Lake Turkana to sediment and water.Several large shield volcanoes formed east of the Turkana Basin beginning by 2.5–3.0 Ma, volcanism overlapping in time, but probably migrating eastward from Mount Kulal on the eastern edge of the basin to Mount Marsabit located at the eastern edge of the Chalbi Desert. The mass of the volcanic rocks loaded and depressed the lithosphere, enhancing subsidence in a shallow southeast trending depression that overlay the Cretaceous and Paleogene (?) Anza Rift. Subsidence in this flexural depression guided the course of the Omo River towards the Indian Ocean, and also localized accumulations of lava along the margins of the shield volcanoes. Lava flows at Mount Marsabit extended across the Omo River Valley after 1.8–2.0 Ma based on estimated ages of fossils in lacustrine and terrestrial deposits, and possibly by as early as 2.5 ± 0.3 Ma based on dating of a lava flow. During the enhanced precipitation in latest Pleistocene and earliest Holocene (11–9.5 ka) this flexural depression became the site of Lake Chalbi, which was separated from Lake Turkana by a tectonically controlled drainage divide.  相似文献   

16.
Modern deltas are understood to have initiated around 7.5–9 ka in response to the deceleration of sea-level rise. This episode of delta initiation is closely related to the last deglacial meltwater events and eustatic sea-level rises. The initial stage of the Mekong River delta, one of the world's largest deltas, is well recorded in Cambodian lowland sediments. This paper integrates analyses of sedimentary facies, diatom assemblages, and radiocarbon dates for three drill cores from the lowland to demonstrate Holocene sedimentary evolution in relation to sea-level changes. The cores are characterized by a tripartite succession: (1) aggrading flood plain to natural levee and tidal–fluvial channel during the postglacial sea-level rise (10–8.4 ka); (2) aggrading to prograding tidal flats and mangrove forests around and after the maximum flooding of the sea (8.4–6.3 ka); and (3) a prograding fluvial system on the delta plain (6.3 ka to the present). The maximum flooding of the sea occurred at 8.0 ± 0.1 ka, 2000 years before the mid-Holocene sea-level highstand, and tidal flats penetrated up to 20–50 km southeast of Phnom Penh after a period of abrupt ~5 m sea-level rise at 8.5–8.4 ka. The delta progradation then initiated as a result of the sea-level stillstand at around 8–7.5 ka. Another rapid sea-level rise at 7.5–7 ka allowed thick mangrove peat to be widely deposited in the Cambodian lowland, and the peat accumulation endured until 6.3 ka. Since 6.3 ka, a fluvial system has characterized the delta plain, and the fluvial sediment discharge has contributed to rapid delta progradation. The uppermost part of the sedimentary succession, composed of flood plain to natural-levee sediments, reveals a sudden increase in sediment accumulation over the past 600–1000 years. This increase might reflect an increase in the sediment yield due to human activities in the upper to middle reaches of the Mekong, as with other Asian rivers.  相似文献   

17.
《Sedimentary Geology》2006,183(3-4):159-179
In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m 2, sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s 1. Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary ‘caps’ overlie a more stable dune ‘core’. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.  相似文献   

18.
We studied the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) in suspended particulate matter from the water column of Lake Tanganyika (East Africa), where sediment studies had shown the applicability of the TEX86 proxy for reconstructing surface lake water temperature. GDGTs, in particular crenarchaeol, showed maximum abundance within the suboxic zone (100–180 m), suggesting that this is the preferred niche of ammonia-oxidizing Thaumarchaeota. Despite evidence for anaerobic methane oxidation in deep anoxic water (300–1200 m) no unambiguous evidence for an imprint of methanotrophic archaea on GDGT distribution was found. Comparison of TEX86 and BIT indices with those of surface sediments suggests that the sedimentary GDGTs are derived predominantly from the oxic zone and suboxic zone of the lake.  相似文献   

19.
《Precambrian Research》2005,136(1):67-106
A new lithotectonic framework for the northwestern Reindeer Zone of the Trans-Hudson Orogen divides rocks into five northwest- to north-dipping volcano-sedimentary assemblages: (1) at the structural base, the 1.92–1.87 Ga largely sedimentary Levesque Bay Assemblage (partly equivalent to former ‘MacLean Lake gneisses’), which lies within the confines of the Kisseynew Domain and is tectonically imbricated with metasedimentary rocks of the <1.85 Ga McLennan and Burntwood groups; (2) the turbiditic Duck Lake Assemblage, also located along the northern edge of the Kisseynew Domain; it contains detrital zircons ranging in age between 1.92 and 1.87 Ga; (3) the ?1.92 Ga mafic–ultramafic volcano-plutonic Lawrence Point Assemblage of the La Ronge Domain; (4) the ≥1.88 Ga felsic to intermediate volcano-plutonic Reed Lake Assemblage of the La Ronge Domain; and (5) the turbiditic Milton Island Assemblage of the Rottenstone Domain, which contains detrital zircons ranging in age between 2.83 and 1.86 Ga. The assemblages are intruded by a variety of 1.91–1.78 Ga mafic to felsic plutons.The Lawrence Point Assemblage is interpreted as a dismembered supra-subduction zone ophiolite. High-MgO refractory harzburgite (‘Group 1’ ultramafic rocks), at the structural base of the assemblage, is geochemically identical to the upper mantle section of selected supra-subduction zone ophiolites and mantle tectonites. Chromite and olivine compositions of the ‘Group 1’ ultramafic rocks are also comparable to those of ophiolitic harzburgite and mantle tectonite. Mafic metavolcanic rocks of the assemblage are classified as subalkaline tholeiitic basalts. Their trace element patterns and Hf, Ta, Th, Y, Nb, and La element ratios resemble those of modern back-arc basin basalts. The Reed Lake Assemblage represents a subduction-generated arc complex that was built on top of the Lawrence Point Assemblage; its mafic metavolcanic rocks are subalkaline basalts, with calc-alkaline trends, and elevated Th and Ce concentrations and negative Nb anomalies. Feldspar porphyry dykes intruding the Lawrence Point and Duck Lake assemblages constrain timing of Lawrence Point ophiolite emplacement onto the Duck Lake Assemblage to 1.86–1.84 Ga. The trace element geochemistry of the dykes suggests continued arc volcanism after ophiolite emplacement. Mafic metavolcanic rocks of the Levesque Bay Assemblage are geochemically similar to those of the Lawrence Point Assemblage. Other ultramafic rocks (peridotite to pyroxenite) are abundant in the Lawrence Point Assemblage, but have similar geochemistry to small ultramafic bodies intruding the Reed Lake, Duck Lake and Levesque Bay Assemblages. They represent a separate, later phase (?1.86 Ga) of ultramafic plutonism, which post-dates ophiolite emplacement.Timing of Lawrence Point ophiolite emplacement (between 1.86 and 1.84 Ga) and geochemistry of later felsic and mafic/ultramafic volcanism suggest that the Lawrence Point ophiolite and overlying Reed Lake arc assemblage were not accreted to the Hearne Craton prior to 1.86 Ga, but were first accreted to the Flin Flon–Glennie Complex after 1.86 Ga.  相似文献   

20.
The Western foreland basin in Taiwan originated through the oblique collision between the Luzon volcanic arc and the Asian passive margin. Crustal flexure adjacent to the growing orogenic load created a subsiding foreland basin. The sedimentary record reveals progressively changing sedimentary environments influenced by the orogen approaching from the East. Based on sedimentary facies distribution at five key stratigraphic horizons, paleogeographic maps were constructed. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin.The basin physiography changed very little from the middle Miocene (∼12.5 Ma) to the late Pliocene (∼3 Ma). The transition from a passive margin to foreland basin setting in the late Pliocene (∼3 Ma), during deposition of the mud-dominated Chinshui Shale, is dominantly marked by a deepening and widening of the main depositional basin. These finer grained Taiwan derived sediments clearly indicate increased subsidence, though water depths remain relatively shallow, and sedimentation associated with the approach of the growing orogen to the East.In the late Pleistocene as the shallow marine wedge ahead of the growing orogen propagated southward, the proximal parts of the basin evolved into a wedge-top setting introducing deformation and sedimentation in the distal basin. Despite high Pleistocene to modern erosion/sedimentation rates, shallow marine facies persist, as the basin remains open to the South and longitudinal transport is sufficient to prevent it from becoming overfilled or even fully terrestrial.Our paleoenvironmental and paleogeographical reconstructions constrain southward propagation rates in the range of 5–20 km/Myr from 2 Ma to 0.5 Ma, and 106–120 km/Myr between late Pleistocene and present (0.5–0 Ma). The initial rates are not synchronous with the migration of the sediment depocenters highlighting the complexity of sediment distribution and accumulation in evolving foreland basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号