首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

2.
依据雷诺方程和k-ε紊流模型,按流体体积(VOF)法追踪波浪自由表面,采用源造波法,建立数值波浪水槽,数值模拟波浪对复杂结构形式海堤的作用.数值模拟结果与经验公式、物理模型试验结果基本符合,说明所建立的数值波浪水槽合理可行.揭示了不规则波作用下复杂结构形式海堤波浪力分布规律,模拟了堤前波浪形态变化,为探讨合理的海堤结构形式提供了依据.  相似文献   

3.
This paper concerns the propagation of transient wave groups, focused at a point in time and space to produce locally large waves having a range of steepness. The experimental study was carried out in a wave flume at Dalian University of Technology. The numerical simulations were based on a nonlinear boundary integral equation solved by a higher-order boundary element method (HOBEM). Rather than simulate the whole experimental tank, local surface elevation measurements were used to drive the numerical solution from a point less than two wavelengths upstream of the focus position, leading to significant savings in computational time. Excellent agreement is achieved between the water surface elevations and the water particle kinematics measured in the experiments and those predicted numerically at wave group focus, even for near-breaking waves up to a steepness of kA=0.405 for which even locally matched 2nd-order theory is inadequate. Results based on the linear and 2nd-order theory are also presented in the comparisons. When compared with the first- and 2nd-order solutions, the fully nonlinear wave–wave interactions produce a steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep.  相似文献   

4.
《Coastal Engineering》2006,53(10):845-855
This paper presents a study of wave damping over porous seabeds by using a two-dimensional numerical model. In this model, the flow outside of porous media is described by the Reynolds Averaged Navier–Stokes equations. The spatially averaged Navier–Stokes equations, in which the presence of porous media is considered by including additional inertia and nonlinear friction forces, is derived and implemented for the porous flow. Unlike the earlier models, the present model explicitly represents the flow resistance dependency on Reynolds number in order to cover wider ranges of porous flows. The numerical model is validated against available theories and experimental data. The comparison between the numerical results and the theoretical results indicates that the omission or linearization of the nonlinear resistance terms in porous flow models, which is the common practice in most of analytical models, can lead to significant errors in estimating wave damping rate. The present numerical model is used to simulate nonlinear wave interaction with porous seabeds and it is found that the numerical results compare well with the experimental data for different wave nonlinearity. The additional numerical tests are also conducted to study the effects of wavelength, seabed thickness and Reynolds number on wave damping.  相似文献   

5.
基于改进型的二阶Boussinesq方程,在交错网络下建立数值模型.利用模型模拟波浪在常水深情况下的传播,波浪反射系数均低于2%.利用该模型模拟波浪在平斜坡前的反射,并将数值结果与解析解进行对比.结果表明,对于相对水深较大情况,坡度较陡时模拟结果明显偏大;对 于相对水深较小情况,坡度超过1:1时,数值结果仍与解析解有....  相似文献   

6.
Due to their capability of correctly representing wave characteristics, the number of numerical models based on Navier–Stokes equation (NSE) models has recently increased remarkably. One of the key challenges of this type of wave model, however, is to minimize the wave re-reflection from the incident boundary. Many numerical techniques have been developed to deal with this problem, and previous studies have reported on internal wave makers that employ NSE. Research on generation and transformation of irregular waves using a three-dimensional NSE model, however, has begun very recently, and few studies have yet been reported. In this study, a three-dimensional numerical model was applied to generate irregular waves, and transformation of irregular waves was simulated in a numerical wave tank. The model was first verified by applying it to simple numerical tests in two dimensions. The model was then used to generate directional monochromatic and irregular waves in three dimensions. The numerical results were compared with the analytical solutions, and good agreement was observed. Finally, the model was applied to simulate the transformation of irregular waves over an uneven bottom geometry in a wave tank.  相似文献   

7.
The VOF method and the kε model, combined with the equation of state of air at constant temperature, have been used to calculate the total horizontal wave force caused by monochromatic waves acting on a perforated caisson with a top cover. From comparison of various parameters, such as the total horizontal force, the pressure difference on the front wall, the pressure on the back wall and the pressure on the top cover, between the numerical results and test data, it can be seen that the numerical results agree well with the test data. It is concluded that the method described in this paper can be utilized to calculate wave forces acting on perforated caissons with a top cover in the case of nonovertopping, nonbreaking waves. A simplified method to calculate the total horizontal force has been developed, based on test data, using a least-squares method. A comparison between the numerical results and the values calculated from the simplified equations shows good agreement. Therefore the simplified equations can be used in engineering applications to evaluate the total horizontal force on a perforated caisson with a top cover.  相似文献   

8.
波浪水槽中非线性浅水波传播特性与模拟   总被引:2,自引:0,他引:2  
通过建立解析解、进行数值模拟和物理实验,研究了波浪水槽中非线性浅水波浪传播特性,给出了数值模拟中对应造波板做正弦运动的二阶入射边界条件。数值模拟采用高阶Boussinesq方程。实验结果、数值结果和解析解进行对比,并讨论了解析解的适用范围、高次谐波的产生及三波相互作用问题。  相似文献   

9.
In this paper, a numerical wave model based on the incompressible Reynolds-averaged Navier–Stokes (RANS) and kε equations is used to estimate the impact of a solitary wave on an idealized beachfront house located at different elevations on a plane beach. The locations of the free surface are reconstructed by volume of fluid (VOF) method. The model is satisfactorily tested against the experimental data of wave runup, and the analytical solution of wave forces on vertical walls. The time histories of wave profiles, forces, and overturning moments on the idealized house are demonstrated and analyzed. The variations of wave forces and overturning moments with the elevation of the idealized beachfront house are also investigated.  相似文献   

10.
A parabolic equation for the propagation of periodic internal waves over varying bottom topography is derived using the multiple-scale perturbation method. Some computational aspects of the numerical implementation are discussed. The results of numerical experiments on propagation of an incident plane wave over a circular-type shoal are presented in comparison with the analytical result, based on Born approximation.  相似文献   

11.
Vegetation canopies control mean and turbulent flow structure as well as surface wave processes in coastal regions. A non-hydrostatic RANS model based on NHWAVE (Ma et al., 2012) is developed to study turbulent mixing, surface wave attenuation and nearshore circulation induced by vegetation. A nonlinear k  ϵ model accounting for vegetation-induced turbulence production is implemented to study turbulent flow within the vegetation field. The model is calibrated and validated using experimental data from vegetated open channel flow, as well as nonbreaking and breaking random wave propagation in vegetation fields. It is found that the drag-related coefficients in the k  ϵ model Cfk and C can greatly affect turbulent flow structure, but seldom change the wave attenuation rate. The bulk drag coefficient CD is the major parameter controlling surface wave damping by vegetation canopies. Using the empirical formula of Mendez and Losada (2004), the present model provides accurate predictions of vegetation-induced wave energy dissipation. Wave propagation through a finite patch of vegetation in the surf zone is investigated as well. It is found that the presence of a finite patch of vegetation may generate strong pressure-driven nearshore currents, with an onshore mean flow in the unvegetated zone and an offshore return flow in the vegetated zone.  相似文献   

12.
A fully nonlinear Boussinessq-type model with several free coefficients is considered as a departure point. The model is monolayer and low order so as to simplify numerical solvability. The coefficients of the model are here considered functions of the local water depth. In doing so, we allow to improve the dispersive and shoaling properties for narrow banded wave trains in very deep waters. In particular, for monochromatic waves the dispersion and shoaling errors are bounded by ~ 2.8% up to kh = 100, being k the wave number and h the water depth. The proposed model is fully nonlinear in weakly dispersive conditions, so that nonlinear wave decomposition in shallower waters is well reproduced. The model equations are numerically solved using a fourth order scheme and tested against analytical solutions and experimental data.  相似文献   

13.
《Coastal Engineering》2005,52(1):25-42
The performance of the standard kε, Wilcox high-Reynolds-number kω, Wilcox low-Reynolds-number kω and Smagorinsky's subgrid scale (SGS) turbulence models is examined against the flow around a circular cylinder 0.37 diameter above a rigid wall. The governing equations are solved using finite difference method in a non-orthogonal boundary-fitted curvilinear coordinate system. A mesh dependence study for the four turbulence models is carried out on computational meshes with different densities. In addition, the performance of the kω models with either wall function or no-slip boundary condition on the cylinder surface is examined on the finest mesh. It is found that the SGS model over-predicts the shedding of vortices from the cylinder and is sensitive to the computational mesh and the model constant Cs used. The standard kε and the Wilcox kω models predict the mean velocity field quite well but generally under-predict the velocity and hydrodynamic force oscillations using wall functions on the cylinder surface. It is also found that the Wilcox kω models with the no-slip boundary condition on the cylinder surface give better predictions on the shedding of vortices than their counterparts using the wall function boundary condition.  相似文献   

14.
《Ocean Modelling》2003,5(3):195-218
Four different two-equation turbulence models for geophysical flows are compared: The kϵ model, two new versions of the kω model, and the Mellor–Yamada model. An extension of the kω model for buoyancy affected and rotating flows is suggested. Model performance is evaluated for a few typical oceanic flows. First, new analytical solutions of the models for the surface layer affected by breaking surface waves are discussed. The deficiencies of earlier attempts are high-lighted, and it is demonstrated why the Mellor–Yamada model and the kϵ model fail. It is illustrated that only one version of the kω model computes correct decay rates for turbulent quantities under breaking waves. Second, it is demonstrated that all models predict almost identical mixed layer depths and profiles for the turbulent kinetic energy in a classical stratified shear-entrainment experiment if the buoyancy term in the second equation is appropriately weighted. Third, the accuracy and numerical robustness of the new kω model in realistic oceanic situations is confirmed by comparison with the data-set of the Ocean Weather Ship ‘Papa’.  相似文献   

15.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

16.
《Coastal Engineering》2004,51(7):557-579
In this paper, a Reynolds Averaged Navier–Stokes (RANS) model was developed to simulate the vortex generation and dissipation caused by progressive waves passing over impermeable submerged double breakwaters. The dynamics of the turbulence are described by introducing a kɛ model with Boussinesq closure. The Height Function (HF) is implemented to define the free-surface configuration. The governing equations are discretized by means of a finite volume method based on a staggered grid system with variable width and height. The feasibility of the numerical model was verified through a series of comparisons of numerical results with the existing analytical solutions and the experimental data. The good agreements demonstrate the satisfactory performance of the developed numerical model. The flow separation mechanism both near the upstream and the downstream edges of the obstacles demonstrates the physical and expected nature of development of the flow. The present model provides an accurate and efficient tool for the simulation of flow field and wave transformation near coastal structures without breaking.  相似文献   

17.
An alternative form of the Boussinesq equations is developed, creating a model which is fully nonlinear up to O(μ4) (μ is the ratio of water depth to wavelength) and has dispersion accurate to the Padé [4,4] approximation. No limitation is imposed on the bottom slope; the variable distance between free surface and sea bottom is accounted for by a σ-transformation. Two reduced forms of the model are also presented, which simplify O(μ4) terms using the assumption ε = O(μ2/3) (ε is the ratio of wave height to water depth). These can be seen as extensions of Serre's equations, with dispersions given by the Padé [2,2] and Padé [4,4] approximations. The third-order nonlinear characteristics of these three models are discussed using Fourier analysis, and compared to other high-order formulations of the Boussinesq equations. The models are validated against experimental measurements of wave propagation over a submerged breakwater. Finally, the nonlinear evolution of wave groups along a horizontal flume is simulated and compared to experimental data in order to investigate the effects of the amplitude dispersion and the four-wave resonant interaction.  相似文献   

18.
《Coastal Engineering》1998,35(3):185-209
Two depth inversion algorithms (DIA) applicable to coastal waters are developed, calibrated, and validated based on results of computations of periodic waves shoaling over mild slopes, in a two-dimensional numerical wave tank based on fully nonlinear potential flow (FNPF) theory. In actual field situations, these algorithms would be used to predict the cross-shore depth variation h based on sets of values of wave celerity c and length L, and either wave height H or left–right asymmetry s2/s1, simultaneously measured at a number of locations in the direction of wave propagation, e.g., using video or radar remote sensing techniques. In these DIAs, an empirical relationship, calibrated for a series of computations in the numerical wave tank, is used to express c as a function of relative depth koh and deep water steepness koHo. To carry out depth inversion, wave period is first predicted as the mean of observed L/c values, and Ho is then predicted, either based on observed H or s2/s1 values. The celerity relationship is finally inverted to predict depth h. The algorithms are validated by applying them to results of computations for cases with more complex bottom topography and different incident waves than in the original calibration computations. In all cases, root-mean-square (rms)-errors for the depth predictions are found to be less than a few percent, whereas depth predictions based on the linear dispersion relationship—which is still the basis for many state-of-the-art DIAs—have rms-errors 5 to 10 times larger.  相似文献   

19.
Laboratory experiments were performed to study the wave damping induced by a porous bed. During the propagation of waves over a porous medium the wave characteristics change: a significant wave height attenuation of about 20–30% is observed and, in almost all cases, an increase in wavelength. The wave decay is found to depend on the wave characteristics like the wave height, the wavelength and the wave shape. We have also studied the influence of the geometric properties of the porous bed (i.e. thickness and length) on the wave dissipation. It is found that the attenuation of the wave height increases with the permeable bed thickness and that there is a maximum wave dissipation for a length of the porous seabed equal to 2.0–2.5 times the wavelength. A comparison is also made of our findings with available literature results. A parametric study of the wave damping has been performed by varying the values of the resistance coefficients derived by both literature and experiments. Literature analytical models have been applied by using the resistance coefficients that better describe our flow conditions. All models in use underpredict the observed wave attenuation for any sensible values of the resistance coefficients.  相似文献   

20.
The boundary layer is very important in the relation between wave motion and bed stress, such as sediment transport. It is a known fact that bed stress behavior is highly influenced by the boundary layer beneath the waves. Specifically, the boundary layer underneath wave runup is difficult to assess and thus, it has not yet been widely discussed, although its importance is significant. In this study, the shallow water equation (SWE) prediction of wave motion is improved by being coupled with the kω model, as opposed to the conventional empirical method, to approximate bed stress. Subsequently, the First Order Center Scheme and Monotonic Upstream Scheme of Conservation Laws (FORCE MUSCL), which is a finite volume shock-capturing scheme, is applied to extend the SWE range for breaking wave simulation. The proposed simultaneous coupling method (SCM) assumes the depth-averaged velocity from the SWE is equivalent to free stream velocity. In turn, free stream velocity is used to calculate a pressure gradient, which is then used by the kω model to approximate bed stress. Finally, this approximation is applied to the momentum equation in the SWE. Two experimental cases will be used to verify the SCM by comparing runup height, surface fluctuation, bed stress, and turbulent intensity values. The SCM shows good comparison to experimental data for all before-mentioned parameters. Further analysis shows that the wave Reynolds number increases as the wave propagates and that the turbulence behavior in the boundary layer gradually changes, such as the increase of turbulent intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号