首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
The flow structure of a swash event over a uniform slope is studied using a RANS-VOF numerical model coupled with a v2f turbulence closure. The model is compared with experimental data of recent laboratory experiments. The ability of the turbulence modelling for simulating swash flow and the evolution of the computed bed shear stress during run-up and run-down are investigated. The agreement between numerical results and measured data, such as water depth, depth-averaged velocity and bed shear stress is very good during run-up. Main discrepancies are found during run-down. The paper also examines the aeration of the water layer in the swash flow, taking advantage of the PLIC method for computing the air–water interfaces. Air is continuously entrapped in the swash front and released at its rear during run-up. A detailed analysis indicates that the flow reversal is initiated near the bottom at the outer boundary of the swash zone and progresses landward. The study highlights the asymmetry between run-up and run-down. During run-up, the swash front propagation determines the turbulence properties and the bed shear stress profile on the beach, whereas the flow properties are more homogeneously distributed in the swash area during run-down.  相似文献   

3.
In this study an Euler-Euler two-phase model was developed to investigate the tunnel erosion beneath a submarine pipeline exposed to unidirectional flow. Both of the fluid and sediment phases were described via the Navier-Stokes equations, i.e. the model was implemented using time-averaged continuity and momentum equations for the fluid and sediment phases and a modified kε turbulence closure for the fluid phase. The fluid and sediment phases were coupled by considering the drag and lift interaction forces. The model was employed to simulate the tunnel erosion around the pipeline laid on an erodible bed. Comparison between the numerical result and experimental measurement confirms that the numerical model successfully predicts the bed profile and velocity field during the tunnel erosion. It is evident that the sediments are transported as the sheet-flow mode in the tunnel erosion stage. Also the transport rate under the pipe increases rapidly at the early stage and then reduces gradually at the end of the tunnel erosion beneath pipelines.  相似文献   

4.
The onset of a three-dimensional jet flow in a stratified fluid is studied with the aid of a direct numerical simulation. An initially cylindrical jet with a Gaussian velocity profile is considered in a fluid with stable linear density stratification. The results indicate that, if an initial small perturbation of the velocity field has a wide spectrum, an exponential growth of the isolated quasi-two-dimensional mode occurs and its spectral maximum is shifted toward smaller wave numbers in comparison with the maximum of the helical mode of the instability of a nonstratified jet. The growth rate is proportional to Ri0.5, where Ri is the global Richardson number. The onset of the instability leads to the formation of the flow’s vortex structure, which consists of a collection of different-polarity quasi-two-dimensional vortices located in a horizontal plane near the longitudinal axis of the jet. At sufficiently long times (Nt > 100, where N is the buoyancy frequency and t is time), the growth of instability reaches the saturation stage and further fluctuations in velocity and density decay under the effect of viscous diffusion. At this stage, the flow becomes self-similar and the time dependences of the transverse and vertical widths of the jet are consistent with the asymptotic behaviors of integral parameters of the flow that are observed experimentally in the far stratified wake. The results suggest that the onset of the instability of a quasitwo-dimensional mode can play the determining role in the dynamics of flow in the far stratified wake.  相似文献   

5.
High Reynolds number flows around a circular cylinder close to a flat seabed have been computed using a two-dimensional standard high Reynolds number kε turbulence model. The effects of gap to diameter ratio, Reynolds number and flat seabed roughness for a given boundary layer thickness of the inlet flow upstream of the cylinder have been investigated. Hydrodynamic quantities and the resulting bedload transport have been predicted, and the vortex shedding mechanisms have been investigated. Predictions of hydrodynamic quantities around a cylinder located far away from the bed (so that the effect of the bed is negligible) are in satisfactory agreement with published experimental data and numerical results obtained for the flow around an isolated cylinder. Results for lower Reynolds number flows have also been computed for comparison with the high Reynolds number flow results. Overall it appears that the present approach is suitable for design purposes at high Reynolds numbers which are present near the seabed in the real ocean.  相似文献   

6.
7.
An evaluation of four well-known Reynolds-Averaged Navier-Stokes (RANS)-based turbulence models was performed in comparison with the results of a dedicated experimental measurement on the near-wake of a circular cylinder in a large water (cavitation) tunnel using a state-of-the-art two-dimensional Digital Particle Image Velocimetry (DPIV) device.The turbulence models investigated were Spalart-Allmaras (S-A), Realizable k-ε (RKE), Wilcox k-ω (WKO) and Shear-Stress-Transport k-ω (SST), which were assessed based on their comparative performances in predicting some important flow field characteristics of the near-wake region of the experimental circular cylinder flow. Within the flow range investigated in this study, which implied a cylinder diameter-based Reynolds Number of 41,300, the qualitative and quantitative comparisons revealed that the application of the SST model to the wall-bounded unsteady flow - that experienced severe adverse pressure gradient, massive flow separation and vortex shedding - presents more successful predictions compared to other models investigated for such challenging flow conditions.  相似文献   

8.
针对我国南海某岛礁珊瑚砂地基上的圆形桩基础,采用N-S方程K-s模型、双向耦合方式跟踪流场中颗粒运动轨 迹的方法,对桩周珊瑚砂的冲刷规律进行了求解,分析了桩体周围流体的速度场以及桩体表面剪应力场的分布规律,同时对桩周珊瑚砂冲刷坑的形成过程进行了模拟。计算结果表明,在桩体周围形成的马蹄形漩涡和桩柱后方的尾涡作用下,桩周土体出现了较为明显的冲刷现象,涡旋的释放显著地影响着珊瑚砂地基上桩基的冲刷坑形状;而且,由于珊瑚砂颗粒密度较石英砂小,水动力作用下桩周冲刷坑更容易形成,所以实际工程中需要考虑有效的防护措施。  相似文献   

9.
In this study, a three-dimensional numerical model is used to study the wave interaction with a vertical rectangular pile. The model employs the large eddy simulation (LES) method to model the effect of small-scale turbulence. The velocity and vorticity fields around the pile are presented and discussed. The drag and inertial coefficients are calculated based on the numerical computation. The calculated coefficients are found to be in a reasonable range compared with the experimental data. Additional analyses are performed to assess the relative importance of drag and initial effects, which could be quantified by the force-related Keulegan and Carpenter (KC) number: KCf=UT/(4πL). Here U is the maximum fluid particle velocity, T the wave period and L the length of structure aligned with the wave propagation direction. For small KCf, the effective drag coefficient is proportional to 1/KCf, provided the wavelength is much longer than the structural length. When wavelength is comparable to the structure dimension, the effective drag coefficient would be reduced significantly due the cancellation of forces, which has been demonstrated by numerical results.  相似文献   

10.
对挡潮闸枢纽中矩形中孔、底孔鱼道中紊流结构进行了较为系统的试验研究,并做了放鱼试验。选择了一种鱼类偏爱流速所对应的流量作为典型流量,考虑了不同的孔口位置(中孔和底孔),用声学多普勒测速仪(ADV)量测了测点的三维瞬时流速及流向,分析了矩形孔口鱼道的三维时均流速分布特征、断面最大流速沿程变化规律、流速矢量场、紊动强度分布及雷诺应力分布。此外,还通过放鱼试验,利用在鱼体植入T形标签和高速摄影机观察了过鱼对象对中孔、底孔的反应情况,分析了过鱼对象与矩形孔口鱼道紊流结构的关系。试验结果表明:水流经中孔形成三维紊动自由射流,经底孔形成三维壁面射流,中孔纵向流速呈高斯分布,而底孔纵向流速则近似为高斯分布,流速由孔口向两侧逐渐减小;中孔和底孔横向流速在位于孔口范围内的纵剖面上沿程减小,孔口之外则变化较小;中孔和底孔垂向流速分布特征表现为在铅垂方向上均存在旋涡;在中孔水平面和纵剖面上,纵向最大流速均沿程衰减;中孔和底孔情形孔口处紊动强度和雷诺应力比非孔口处大得多,而非孔口处不同水深平面上紊动强度和雷诺应力变化趋于平缓;过鱼对象喜爱在紊动强度分布的峰值区和雷诺应力较大变幅区溯游。  相似文献   

11.
《Coastal Engineering》2001,44(1):13-36
Interactions between a solitary wave and a submerged rectangular obstacle are investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used to measure the velocity field in the vicinity of the obstacle. The generation and evolution of vortices due to flow separation at the corners of the obstacle are recorded and analyzed. It is found that although the size of the vortex at the weatherside of the obstacle is smaller than that at the leeside, the turbulence intensity is, however, stronger. A numerical model, based on the Reynolds Averaged Navier–Stokes (RANS) equations with a kϵ turbulence model, is first verified with the measurements. Overall, the agreement between the numerical results and laboratory velocity measurements is good. Using the RANS model, a series of additional numerical experiments with different wave heights and different heights of the rectangular obstacle are then performed to test the importance of the energy dissipation due to the generation of vortices. The corresponding wave transmission coefficient, the wave reflection coefficient and the energy dissipation coefficient are calculated and compared with solutions based on the potential flow theory. As the height of the obstacle increases to D/h=0.7, the energy dissipation inside the vortices can reach nearly 15% of the incoming wave energy.  相似文献   

12.
A numerical model is developed to predict the onset of local scour below offshore pipelines in steady currents and waves. The scour is assumed to start when the pressure gradient underneath the pipeline exceeds the floatation gradient of the sediments. In this model, the water flow field above the bed is determined by solving the two-dimensional (2-D) Reynolds-averaged Navier–Stokes equations with a k-ω turbulence closure. The seepage flow below the seabed is calculated by solving the Darcy's law (Laplace's equation) with known pressure distribution along the common boundaries of the flow domains-seabed. The numerical method used for both the turbulent flow around the pipeline and Darcy's flow in the seabed is a fractional finite element method. The average pressure gradient along the buried pipe surface is employed in the evaluation of onset condition with a calibration coefficient. The numerical model is validated against experimental data available in literature. A unified onset condition for steady currents and waves is proposed. Influences of flow parameters, including water depth, embedment depth, boundary layer thickness, Reynolds number (Re) and Keuleagan–Carpenter (KC) number, on the pressure drop coefficient over the pipeline are studied systematically.  相似文献   

13.
We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique is employed to measure instantaneous free surface displacements and velocity fields in the vicinity of a porous dike. The porous medium, consisting of uniform glass spheres, is mounted on the seafloor. Due to the limited size of each field of view (FOV) for high spatial resolution purposes, four FOVs are set in order to form a continuous flow field around the structure. Quantitative mean properties are obtained by ensemble averaging 30 repeated instantaneous measurements. The Reynolds decomposition method is then adopted to separate the velocity fluctuations for each trial to estimate the turbulent kinetic energy. In addition, a highly accurate two-dimensional model with the volume of fluid interface tracking technique is used to simulate an idealized volume-averaged porous medium. The model is based on the Volume-Averaged Reynolds Averaged Navier–Stokes equations coupled with the non-linear kε turbulence closure solver. Comparisons are performed between measurements and numerical results for the time histories of the free surface elevation recorded by wave gauges and the spatial distributions of free surface displacement with the corresponding velocity and turbulent kinetic energy around the permeable object imaged by the PIV system. Fairly good agreements are obtained. It is found that the measured and modeled turbulent intensities on the weather side are much larger than those on the lee side of the object, and that the magnitude of the turbulent intensity increases with increasing wave height of a solitary wave at a constant water depth. The verified numerical model is then used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.  相似文献   

14.
深海蕴藏着丰富的多金属结核资源,受海水深度等限制,结核采集目前仍存在巨大挑战。水力式采矿具有结构简单、可靠性高的优势,是目前最具发展前景的采集方式之一。水力式采矿通过水流动力进行结核采集,喷射形成的复杂流场结构直接影响海床上结核颗粒剥离、起动、采集效率和海洋环境扰动强度,采集器离地高度、喷嘴射流角度和速度等具有较大优化空间。基于计算流体力学数值模拟研究了集矿头附近三维水流结构,分析了喷嘴射流速度和结核粒径对局部流场、床面剪切力以及结核采集能效的影响。结果表明:集矿头周围流场存在典型分区结构,包括淹没射流区、冲击区、壁面射流区、汇合区和上升区;随着喷射流速增大,最大床面剪切力近似线性增长,结核有效起动面积指数增长;随着结核粒径增大,有效起动面积减小,结核采集能效降低;综合考虑结核采集强度和采集能效,建议采集器喷射流速取8~9 m/s。  相似文献   

15.
Numerical flow and performance analysis of a water-jet axial flow pump   总被引:1,自引:0,他引:1  
The purpose of the present study is to investigate the performance and three-dimensional flow fields in a water-jet pump. TASCflow is employed to simulate the rotator-stator coupling flow field. A standard k-ε turbulence model combined with standard wall functions is used. In order to investigate the effect of a rear stator on flow fields, the flows in two water-jet pumps with and without a rear stator are studied. Computational fluid dynamics (CFD)-predicted overall performances are in good agreement with the experimental results. Then the flow fields, such as the pressure distribution on the blade surfaces, and the axial and tangential velocity distribution, especially the radial loading distribution, are investigated at different flow rates. In addition, the effects of a rear stator and different spacings between the rotor and the stator on the overall performance and the flow fields of the water-jet pump are also investigated.  相似文献   

16.
A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. Thejet-to-crossflow velocity ratio (R) varies in the range of 2 ~ 16; both vertical jets and inclined jets without excess streamwisemomentum are considered. The numerical results of the standard two-equation k-~ model show that the turbulent structurecan be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R >4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallelwith the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details andscalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20 ~ 60.The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated,with distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets instrong crossflow, i.e. R≤ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortexflow can still be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flow characteristics and mixing rates are well supported by experimental and field data  相似文献   

17.
Transport of bed sediment inside and beneath the scour protection may cause deformation and sinking of the scour protection for pile foundations. This may reduce the stability of the mono pile and change the natural frequency of the dynamic response of an offshore wind turbine installed on it in an unfavourable manner. Using physical models and 3D computational fluid dynamic (CFD) numerical simulations, the velocity and bed shear stresses are investigated in complex scour protections around mono piles in steady current. In the physical model the scour protections consisted of an upper cover layer with uniformly distributed coarse stones and a lower filter layer with finer stones. For the numerical simulations, the Flow-3D software was used. The scour protection layers were simulated with different numerical approaches, namely regularly arranged spheres, porous media, or their combinations (hybrid models). Numerical simulations with one or four layers of cover stones without filter layer were first computed. Three additional simulations were then made for a scour protection with a cover layer and a single filter layer. Finally, a simulation of a full scale foundation and scour protection was made with porous media approach.Based on the physical and numerical results, a method to determine the critical stones size to prevent motion of the base sediment is established and compared to a full scale case with sinking of scour protection (Horns Rev I Offshore Wind Farm, Denmark). It is also found that the CFD simulations are capable of calculating the flow velocities when the scour protection is represented by regular arranged spheres, while the turbulence in general is underestimated. The velocity can also be calculated using porous media flow approach, but the accuracy is not as good as for spheres. The deviation is more severe for more complex scour protections. In general, computational models provide valuable information for the prediction and design of scour protections for offshore wind farms.  相似文献   

18.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

19.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

20.
The experimental results of time average velocity components measured around circular pier models during transient scour stage using acoustic Doppler velocimeter are shown for flow pattern and turbulence characteristics. Totally, four experiments were performed under clear water scour conditions in a model of gravel bed stream. Four circular pier models of diameter 6.6, 8.4, 11.5, and 13.5?cm were used for this study. Detailed controlled measurements on velocity components, and turbulence intensities near the pier and in scour hole at 0° and 180° plane are shown. Flow structure around a pier model in the presence of a scoured region was compared with the flow structure similarly noticed around all pier model runs by utilizing the observations taken at 0° and 180° plane from flow axis. Size of the primary vortex at 0° plane with largest diameter pier model in place (R4 run) is found to be maximum and was approximately 61% larger than that for smallest diameter pier model in place (R1 run). The time-averaged velocity components of turbulence intensities plots at 0° and 180° planes are also presented around each pier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号