首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The kinetic equation for the distribution function of relativistic electrons is solved taking into account quasi-linear interactions with waves and radiative processes. Mean values of the pitch angles ψ are calculated. If the particles of the primary beam with Lorentz factors γb~106 are resonant, then the condition γbψb?1 is satisfied, the particle distribution is described by the function f (γ) ∝ γ?4, and the synchrotron radiation spectrum is characterized by the spectral index α=3/2. On the other hand, if a cyclotron resonance is associated with particles of the high-energy tail of the secondary plasma (γt~105), then γtψt?1, and the distribution function has two parts—f (γ) ∝ γ and f (γ) ∝ γ?2—which correspond to the spectral indices α1=+1 and α2=?0.5. This behavior is similar to that observed for the pulsar B0656+14. The predicted frequency of the maximum νm=7.5×1016 Hz coincides with the peak frequency for this pulsar. The model estimate for the total synchrotron luminosity of a typical radio pulsar with hard radiation L s =3×1033 erg/s is in agreement with observed values.  相似文献   

2.
Simultaneous observations of amplitude scintillations at 40 MHz, 140 MHz and 360 MHz radiated from ATS-6 satellite at 34° E longitude were made at Ootacamund near the magnetic equator in India. It has been found that the frequency variation of scintillation index (S 4) isS 4f ?n , withn being about 1·2 only for weak scintillations, i.e., so long as the scintillation index does not exceed 0·6 at the lower frequency. For strong scintillations (S 4>0·6) where multiple scattering may be present, the exponentn itself is a function of the intensity of scintillation, the scintillation indices at two frequencies are related by:S 4(f 1)=S 4(f 2) exp [1·3 log(f 2/f 1)(1?S 4(f 2)] so long asf 2/f 1≤3. Thus knowing scintillation index at a given frequency one can estimate the scintillation index at another frequency. This will be of significant importance for communication problems. Evidence is also shown for the reversal of the frequency law in cases of intense scintillations.  相似文献   

3.
The Gladstone-Dale law (specific refraction) and the Drude law (molecular refraction) for silica polymorphs, at “sodium light” (λ D =0.5893 μm), are derived from simple atomic properties of SiO2 complex (atomic weight, first ionization potential). The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) v 0 of elementary electron oscillators (in energy units, hv) is identified with the band gap E G of a solid; on the other hand, this E G -gap is identified with the single ionization potential \(\tilde U\) of non-free atoms. For \(\tilde U\) =E G =10.2 eV (energy gap of quartz, see Nitsan and Shankland 1976b) the Gladstone-Dale law, or specific refraction, is (n?1)/ρ=0.208 cm3/g, where n and ρ are the refractive index and the density of medium, respectively. According to empirical data, the average value of the specific refraction of pure SiO2 polymorphs (except stishovite-high density phase of silica) is (〈n〉?1)/ρ=0.207±0.001 (〈n〉 denotes the mean refractive index of crystal). For stishovite the Drude law (n 2?1)/ρ=0.542 cm3/g is valid under an assumption that the first ionization potential \(\tilde U\) =E G ≈9 eV; this result is good agreement with the empirical value (〈n2?1)/ρ=0.536 cm3/g.  相似文献   

4.
Thermal diffusivity (D) was measured up to ~1,800 K of refractory materials using laser-flash analysis, which lacks radiative transfer gains and contact losses. The focus is on single-crystal MgO and Al2O3. These data are needed to benchmark theoretical models and thereby improve understanding of deep mantle processes. Measurements of AlN, Mg(OH)2, and isostructural BeO show that the power law (D = AT ?B ) where T is temperature holds for simple structures. Results for more structurally complicated corundum Al2O3 with and without impurity atoms are best fit by CT d  + ET f where d ~ ?1 and f ~ ?4, whereas for isostructural Fe2O3, f is near +3 and multiphase ilmenite Fe1.12Ti0.88O3 is fit by the above power law. The positive temperature response for hematite is attributed to diffusive radiative transfer arising from electronic–vibronic coupling. We find good agreement of k and D data on single-crystal and non-porous ceramic Al2O3. For the corundum structure, D is nearly independent of T at high T. Although D at 298 K depends strongly on chemical composition, at high temperature, these differences are reduced. Thermal conductivity provided for MgO and Al2O3, using LFA data and literature values of density and heat capacity, differs from contact measurements which include systematic errors. The effect of pressure is discussed, along with implications for the deepest mantle.  相似文献   

5.
Ulf Hålenius  Klaus Langer 《Lithos》1980,13(3):291-294
Six natural chloritoid crystals with Fe2+ and Fe3+ contents ranging from 4.15 to 12.81 and from 0.411 to 0.849g-atoms/l, respectively, as determined by means of microprobe and Mössbauer techniques, served as reference material to develop non-destructive microscope-spectrophotometric methods for quantitative Fe2+ – Fe3+ determinations in chloritoids from unpolarized spectra of (001) platelets. Fe2+ concentrations in g-atom/l can be obtained from [ [Fe3+]=C1xD1/t where D1 = log10(I0/I at 28,000 cm-1 and t=crystal thickness in cm; C1 is a conttant that may be influenced somewhat by experimental conditions and is found to be 0.002289 with the experimental set-up used in this study. Fe2+ concentrations in g-atom/l can be obtained from [Fe2+]=C1xD1/D1-C3 with D2=log10(I0/I) at 16,300 cm?1 and constants C4 = 45.36 and C5 = 3.540. Due to the uncertainties in absorbance measurements, D1 and D2 and the thickness measurements, the accuracies are ±0.05 and ±0.15 g-atom/l for [Fe3+] and [Fe2+], respectively. The determinations may be carried out on chloritoid grains in normal thin sections with an areal resolution of ~10 μm.  相似文献   

6.
The dependence of Mg/Fe ordering on oxygen partial pressure in natural olivine crystals of volcanic origin has been studied by X-ray diffraction. Two natural crystals with 10% and 12% fayalite have been investigated and the atomic positions, anisotropic temperature factors, extinction coefficients and site occupancies have been refined, reaching R-values of 2.2%. After subjecting the crystals to oxygen partial pressures of 10?16 bar and 10?21 bar the crystals were studied again. In total six crystals were studied and the distribution coefficients K D determined. The natural untreated crystals had K D=1.09 and 1.06, e.g., a slight preference of Fe in (M1). p(O2) of 10?16 bar increased the ordering of Fe in (M1) to K D=1.2, while p(O2)=10?21 bar reversed K D to 0.8 with ordering of Fe in (M2). These experiments suggest that Mg/Fe ordering in olivines is primarily determined by the prevailing oxygen partial pressure.  相似文献   

7.
Study of the 26 December 2011 Aswan earthquake,Aswan area,South of Egypt   总被引:1,自引:1,他引:0  
The source process and parameters for a moderate earthquake of magnitude Ml 4.1 that occurred on the Kalabsha fault at the Aswan area are analyzed. The derived focal mechanisms of this event and other two aftershocks using polarities of P, SV, and SH waves show strike-slip fault with minor vertical movement of normal type. The solutions give two nodal planes trending ENE–WSW and NNW–SSE in close agreement with the surface traces of the faults crossing the area. The movement is right lateral along the first plane while left lateral along the second one. The rupture process characterization of this event has been investigated by using the empirical Green’s function deconvolution method. By inversion only for the P wave part of the records of these three events (main and other two aftershocks), the source time function for the master events and the azimuthally variations in the (RSTF) pulse amplitude are retrieved for estimating the rupture directivities. The estimated rupture direction is combined with the P-wave focal mechanisms for the three events to identify the fault plane solution for these earthquakes. Based on the width, amplitudes, and numbers of the isolated source time functions, a complex bi-lateral rupture of the studied earthquake is delineated. The source parameters of the master event is calculated and the derived corner frequencies f o for P-wave spectra show a value of 6.6 Hz; the seismic moment (M o ) is 4.2?×?1022 Nm; the average displacement (U) is 0.5 m; fault radius (r) 40 m; the average value of the stress drops (Δσ) is 0.6 Mpa, and the moment magnitude (M w ) is 4.4.  相似文献   

8.
We have determined the Nd3+ diffusion kinetics in natural enstatite crystals as a function of temperature, f(O2) and crystallographic direction at 1 bar pressure and applied these data to several terrestrial and planetary problems. The diffusion is found to be anisotropic with the diffusion parallel to the c-axial direction being significantly greater than that parallel to a- and b-axis. Also, D(//a) is likely to be somewhat greater than D(//b). Diffusion experiments parallel to the b-axial direction as a function of f(O2) do not show a significant dependence of D(Nd3+) on f(O2) within the range defined by the IW buffer and 1.5 log unit above the WM buffer. The observed diffusion anisotropy and weak f(O2) effect on D(Nd3+) may be understood by considering the crystal structure of enstatite and the likely diffusion pathways. Using the experimental data for D(Nd3+), we calculated the closure temperature of the Sm-Nd geochronological system in enstatite during cooling as a function of cooling rate, grain size and geometry, initial (peak) temperature and diffusion direction. We have also evaluated the approximate domain of validity of closure temperatures calculated on the basis of an infinite plane sheet model for finite plane sheets showing anisotropic diffusion. These results provide a quantitative framework for the interpretation of Sm-Nd mineral ages of orthopyroxene in planetary samples. We discuss the implications of our experimental data to the problems of melting and subsolidus cooling of mantle rocks, and the resetting of Sm-Nd mineral ages in mesosiderites. It is found that a cooling model proposed earlier [Ganguly J., Yang H., Ghose S., 1994. Thermal history of mesosiderites: Quantitative constraints from compositional zoning and Fe-Mg ordering in orthopyroxene. Geochim. Cosmochim. Acta 58, 2711-2723] could lead to the observed ∼90 Ma difference between the U-Pb age and Sm-Nd mineral age for mesosiderites, thus obviating the need for a model of resetting of the Sm-Nd mineral age by an “impulsive disturbance” [Prinzhoffer A, Papanastassiou D.A, Wasserburg G.J., 1992. Samarium-neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797-815].  相似文献   

9.
Mössbauer spectroscopy has been used widely to characterize the ferric (Fe3+) and ferrous (Fe2+) proportions and coordination of solid materials. To obtain these accurately, the recoilless fraction is indispensible. The recoilless fractions (f) of iron-bearing minerals, including oxides, oxyhydroxides, silicates, carbonates, phosphates and dichalcogenides, and silicate glasses were evaluated from the temperature dependence of their center shifts or absorption area with the Debye model approximation. Generally, the resolved Debye temperature (θD) of ferric iron in minerals, except dichalcogenides, through their center shifts ranging from 400 to 550 K, is significantly larger than ferrous iron ranging from 300 to 400 K, which is consistent with the conclusion from previous work. The resolved f (Fe3+)RT with the center shift model (CSM) ranges from 0.825 to 0.925, which is larger than that obtained for f(Fe2+)RT, which ranges from 0.675 to 0.750. Meanwhile, the θD and f resolved from temperature-dependence of absorption are generally lower than from center shifts, especially for ferric iron. The significant difference between f(Fe3+) and f(Fe2+) indicates the necessity of recoilless fraction correction on the Fe3+/(Fe3++Fe2+) resolved from Mössbauer spectra.  相似文献   

10.
A series of experiments on a synthetic, pigeonite-saturated, basaltic shergottite were carried out to constrain the variation of D(Eu/Gd)pigeonite/melt and D(Eu/Sm)pigeonite/melt with oxygen fugacity (fO2). The experiments have been run under both dry and hydrous conditions. The shergottite was doped with 0.1, 0.5, and 1.0 wt.% Eu, Gd, and Sm oxides in different experiments and was equilibrated at liquidus conditions for 24 hours. D(Eu/Gd)pigeonite/melt in dry melts ranges from 0.156 ± 0.014 (fO2 = IW − 1) to 0.630 ± 0.102 (IW + 3.5). D(Eu/Sm)pigeonite/melt in dry melts ranges from 0.279 ± 0.021 (IW − 1) to 1.114 ± 0.072 (IW + 3.5). Due to difficulties with low-fO2 experiments, hydrous distribution coefficients were measured, but were not used in the calibration of the Eu-oxybarometers. These two Eu-oxybarometers provide an accurate way to measure fO2 recorded during pigeonite crystallization, thereby yielding a record of fO2 during the earliest period of Martian meteorite parent magma crystallization history.Using this new calibration, Martian meteorite pigeonite cores record fO2 values of IW − 0.6 (±0.3) (QUE94201) to IW + 1.9 (±0.6) (Shergotty). These new values differ in magnitude, but not trend, from previously published data. The pigeonite Eu-oxybarometer yields an fO2 range in the basaltic shergottites of 2 to 3 orders of magnitude. Several processes have been proposed to explain the origin of this fO2 range, the majority of which rely on assimilation of an oxidized source. A potential correlation between this new pigeonite data and recent Fe-Ti oxide data, however, is consistent with intrinsic fO2 differences in the magma source region being responsible for the measured fO2 variations. This implies that the Martian meteorite source region, the mantle or lithosphere, may be heterogeneous in nature. However, the process of assimilation cannot be completely ruled out in that an assimilation event that took place before crystallization commenced would result in the overprinting of the source region fO2 signature.  相似文献   

11.
The hydrocarbon content of an aromatic fraction, isolated from the bitumen of Green River shale, was studied by mass spectrometry, infra-red spectrometry, gas chromatography and a dehydrogenation technique. The hydrocarbon types and their distribution in this aromatic fraction, as determined by mass spectrometry, include the following: CnH2n?6(10%), CnH2n?8 (31 %), CnH2n?10(18%), CnH2n?12(12%), CnH2n?14(8%) and a series of alkenylbenzenes (20%). The carbon-number range, empirical formulae and quantity of each compound in the major types are reported. Mass spectra of several compounds and homologous mixtures of compounds isolated from the aromatic fraction are also given.  相似文献   

12.
Spinifex-textured.magnesian(MgO 25 wt.%) komatiites from Mesoarchean Banasandra greenstone belt of the Sargur Group in the Dharwar craton,India were analysed for major and trace elements and~(147,146)Sm-~(143,142)Nd systematics to constrain age,petrogenesis and to understand the evolution of Archean mantle.Major and trace element ratios such as CaO/Al_2O_3.Al_2O_3/TiO_2,Gd/Yb,La/Nb and Nb/Y suggest aluminium undepleted to enriched compositional range for these komatiites.The depth of melting is estimated to be varying from 120 to 240 km and trace-element modelling indicates that the mantle source would have undergone multiple episodes of melting prior to the generation of magmas parental to these komatiites.Ten samples of these komatiites together with the published results of four samples from the same belt yield ~(147)Sm-~(143)Nd isochron age of ca.3.14 Ga with an initial ε_(Nd)(f) value of+3.5.High precision measurements of ~(142)Nd/~(144)Nd ratios were carried out for six komatiite samples along with standards AMES and La Jolla.All results are within uncertainties of the terrestrial samples.The absence of~(142)Nd/~(144)Nd anomaly indicates that the source of these komatiites formed after the extinction of ~(146)Sm,i.e.4.3 Ga ago.In order to evolve to the high ε_(Nd)(t) value of +3.5 by 3.14 Ga the time-integrated ratio of~(147)Sm/~(144)Nd should be 0.2178 at the minimum.This is higher than the ratios estimated,so far,for mantle during that time.These results indicate at least two events of mantle differentiation starting with the chondritic composition of the mantle.The first event occurred very early at ~4.53 Ga to create a global early depleted reservoir with superchondritic Sm/Nd ratio.The source of Isua greenstone rocks with positive ~(142)Nd anomaly was depleted during a second differentiation within the life time of ~(146)Sm,i.e.prior to 4.46 Ga.The source mantle of the Banasandra komatiite was a result of a differentiation event that occurred after the extinction of the ~(146)Sm,i.e.at 4.3 Ga and prior to 3.14 Ga.Banasandra komatiites therefore provide evidence for preservation of heterogeneities generated during mantle differentiation at4.3 Ga.  相似文献   

13.
Scaling properties of earthquake populations bear the major information on the physics of the source process of an earthquake. To determine scaling properties, source spectra of more than 400 earthquakes of Kamchatka were determined in a frequency range 0.1–30 Hz using materials of digital registration of PET station, and characteristic frequencies of earthquakes were estimated. The range of magnitudes is 4–6.5, the range of distances is 80–220 km. To enable reduction of a spectrum to the source, attenuation properties of the medium around PET were determined beforehand. It is revealed that source spectra show several corner (characteristic) frequencies: f c1, f c2 and f c3; where the spectral trend changes: from f 0 to f ?1, from f ?1 to f ?2, and from f ?2 to f ?3, respectively. Although in some cases f c1f c2 in agreement with the usual ω?2 spectral model, the main part of spectra has more complicated character. For a large part of the studied earthquakes a source-controlled upper cutoff of acceleration spectrum, or corner frequency f c3, is observed. This is an important fact, as the existence of f c3 (source-controlled f max) is not recognized in the bulk of the seismological literature. For f c1, the observed scaling agrees with the usual hypothesis of similarity of the earthquake sources of different size (magnitude); it is close to f c1M 0 ?1/3 , where M 0 is seismic moment. For f c2, scaling is close to f c2M 0 ?0.17 f c1 0.5 , that indicates an expressed violation of similarity. For f c3, scaling is close to f c2 ~ M 0 ?0.08 f c1 0.25 , so that similarity is broken even sharper in this case. Hypotheses about possible causes of the observed scaling are discussed.  相似文献   

14.
Calcite dissolution rates were measured as a function of saturation state in NaCl–CaCl2–MgCl2 solutions at 1 bar (0.1 MPa) pCO2 and 25 °C. Rates measured in phosphate- and sulfate-free pseudo-seawater (Ca2+:Mg2+= 0.2, I= 0.7) were compared with those in synthetic brines. The brines were prepared by co-varying calcium and magnesium (Ca2+:Mg2+= 0.9; 2.0; 2.8; 3.1; 4.8; 5.8) along with ionic strength (I= 0.9; 1.1; 1.6; 2.1; 3.0; 3.7; 4.4 m) to yield solutions approximating those of subsurface formation waters. The rate data were modeled using the equation, R = k(1 ? Omega;) n , where k is the empirical rate constant, n describes the order of the reaction and ω is saturation state. For rates measured in the pseudo-seawater, n= 1.5 and k= 4.7 × 10?2 mol m?2 hr?1. In general, rates were not significantly faster in the synthetic brines (n= 1.4 ± 0.2 and k= 5.0 ± 7 × 10?2 mol m?2 hr?1). The rate coefficients agree within experimental error indicating that they are independent of ionic strength and Ca2+:Mg2+ over a broad range of brine compositions. These findings have important application to reaction-transport modeling because carbonate bearing saline reservoirs have been identified as potential repositories for CO2 sequestration.  相似文献   

15.
The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na_2O + K_2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(~(87)Sr/~(86)Sr)_t = 0.70762-0.70809,low ε_(Nd)(t) =-12.76 to-12.15 values and negative values of ε_(Hf)(t) =-23.49 to-17.02 with small variations in(~(176)Hf/~(177)Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.  相似文献   

16.
The apparent equilibrium constant for the exchange of Fe and Ni between coexisting olivine and sulfide liquid (KD = (XNiS/XFeS)liquid/(XNiSi12O2/XFeSi12O2)olivine; Xi = mole fraction) has been measured at controlled oxygen and sulfur fugacities (fO2 = 10−8.1 to 10−10 and fS2 = 10−0.9 to 10−1.7) over the temperature range 1200 to 1385°C, with 5 to 37 wt% Ni and 7 to 18 wt% Cu in the sulfide liquid. At log fO2 of −8.7 ± 0.1, and log fS2 of −0.9 to −1.7, KD is relatively insensitive to sulfur fugacity, but comparison with previous results shows that KD increases at very low sulfur fugacities. KD values show an increase with the nickel content of the sulfide liquid, but this effect is more complex than found previously, and is greatest at log fO2 of −8.1, lessens with decreasing fO2, and KD becomes independent of melt Ni content at log fO2 ≤ −9.5. The origin of this variation in KD with fO2 and fS2 is most likely the result of nonideal mixing of Fe and Ni species in the sulfide liquid. Such behavior causes activity coefficients to change with either melt oxygen content or metal/sulfur ratio, effects that are well documented for metal-rich sulfide melts.Application of these experimental results to natural samples shows that the relatively large dispersion that exists in KD values from different olivine + sulfide-saturated rock suites can be interpreted as arising from variations in fO2, fS2, and the nickel content of the sulfide liquid. Estimates of fO2 based on KD and sulfide melt composition in natural samples yields a range from fayalite-magnetite-quartz (FMQ)-1 to FMQ-2 or lower, which is in good agreement with previous values determined for oceanic basalts that use glass ferric/ferrous ratios. Anomalously high KD values recorded in some suites, such as Disko Island, probably reflect low fS2 during sulfide saturation, which is consistent with indications of low fO2 for those samples. It is concluded that the variation in KD values from natural samples reflects olivine-sulfide melt equilibrium at conditions within the T-fO2-fS2 range of terrestrial mafic magmas.  相似文献   

17.
A hypothesis is presented that the dissolution of albite includes the exchange of sodium for hydrogen ion in a surface layer of the mineral and the structural collapse of the residual anionic lattice of the layer. The ion exchange is described by the first law of diffusion (D25°C = 3 × 10?22 and 1.5 × 10?20 cm2sec?1 at PCO2 = 0 and 26.2 atm, respectively). The surface residual layer reaches a steady-state thickness ranging from n × 10?8 to n × 10?5 cm according to the temperature and PCO2. The increase in aqueous sodium with time in a continuous ground-water system is described by a simple exponential equation. The equation is used to estimate the percolation time of ground water from the data on the chemical composition of a water sample. The probable times range from 14 to 3840 days for various ground-water systems and are compared to the times of percolation calculated from the geothermal and hydraulic data. Both estimates are found to be in general agreement. The concentrations of Al and Si in cold water from granitic rocks are shown to be controlled by the chemical equilibrium with respect to an aged aluminosilicate. The aluminosilicate precipitates from ground water as an amorphous isoelectric solid. Its chemical composition is represented by a simplified stoichiometric formula [Al(OH)3](1?x)[SiO2]x and varies linearly with pH of the solution. The atoms of Al, O and H tend to occupy a fixed position in the solid given by the gibbsite structure upon aging in the field. The solubility product of the solid is estimated from the published data on experimental and field research into the dissolution of feldspars: logK = (1 ? x) × log [Al3+] + xlog [H4SiO4] ? (3 ? 3x) log [H+] = 8.56 ? 11.26x, where x is the molar fraction of silica in the aluminosilicate.  相似文献   

18.
The kinetics of oxygen isotope self-diffusion in natural samples of hornblende, tremolite, and richterite have been measured. Samples were run under hydrothermal conditions using 18O enriched water. Profiles of 18O(16O + 18O)vs depth into the crystal were obtained using an ion microprobe; the depths of sputtered holes were measured using an optical interferometer. At 1000 bars (100 MPa) water pressure, the activation energies (Q) and pre-exponential factors (D0) for diffusion parallel to c are: D0(cm2/sec) Q (kcal/gm-atom) T (°C) Hornblende 1+20?1 × 10?741 ± 6 650–800 Tremolite 2+30?2× 10?8 39 ± 5 650–800 Richterite 3+5?2 × 10?4 57 ± 2 650–800The diffusion coefficient (D) for hornblende at 800°C and 1000 bars water pressure measured parallel to the c crystallographic direction is at least ten times greater than that parallel to the a or b directions. An increase in water pressure from 200 to 2000 bars increases D by a factor of 2.7 for diffusion parallel to c at 800°C. The D value for hornblende at 800°C is about 0.01 that for quartz and 0.001 that for anorthite. As a result, closure temperatures for oxygen exchange in natural primary amphiboles are significantly higher than for quartz or feldspars. It is unlikely that amphiboles will exchange oxygen isotopes by diffusion under most crustal conditions.  相似文献   

19.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

20.
Kinetic rates of Fe2+-Mg disordering in three orthopyroxenes (mean value of XFe = Fe2+/(Fe2++Mg) = 0.175,0.482,0.770 respectively) have been determined employing heating experiments and single crystal X-ray structural refinements. Disordering rate constants \((\vec K)\) (550800° C) for two pyroxenes are given by: ln \((\vec K)\) = 27.107(±5.177)?32062(±783)T?1(XFe = 0.175) ln \((\vec K)\) = 16.142(±0.057)?18227(±423)T?1(XFe = 0.770) The distribution coefficients KD (representing a steady state of disordering FeM2 + MgM1 ? FeM1 + MgM2) are given by: ln KD = 5.016(±0.223)-7033(±1473) T?1(XFe = 0.175) ln KD = 1.988(±0.122)-3809(±913)T?1(XFe = 0.770) These distribution coefficients provide the constraint of the disordering reaction on the value of the equilibrium constant for Fe2+-Mg order-disorder. Until the low temperature dependence of KD is well constrained, the calculation of cooling rates of pyroxenes and host rocks cannot be done reliably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号