首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper highlights the efficiency and complementarity of a light package of geophysical techniques to study the structure of karst Unsaturated Zone (UZ) in typical Mediterranean environment where soil cover is thin or absent. Both selected techniques, 2D Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), are widely used in environmental studies and their application is accessible for a lot of scientists/engineers. However, GPR or ERT alone is not able to provide an enhanced characterization of geological features in karst media. In the present study, GPR results supply a near surface high resolution imaging and thus can provide relevant geological information such as stratifications and fractures. Despite the quality of the results GPR's investigation depth remains limited to around 12 m. Apparent and inverted resistivity provided by ERT surveys shows strong lateral and vertical variations. These variations can inform about general geological structuring and feature orientation. ERT is able to prospect down to 40 m but it's a low resolution integrative technique. In the study area the investigated limestone is a commonly electrical resistive formation (more than 2000 Ω.m). However deeper than 5–7 m, the ERT profiles reveal several zones of moderate resistivity (around 900 Ω.m). In these zones a stratification change corresponding to slanted bedding is clearly identified by GPR results. The combination of both GPR and ERT results can allow a well-established geological interpretation. These moderate resistivity zones with slanted beddings can explain the presence of a perennial water flow point 35 m below the surface of the studied site within the underground gallery of the Low-Noise Underground Laboratory (LSBB).  相似文献   

2.
The eruptions of Mt Ruapehu in the North Island of New Zealand in 1995 and 1996 caused a tephra barrier to be formed across the outlet of Crater Lake. By 2005 seepage from the refilled lake into the barrier raised the possibility of an eventual collapse of the barrier, releasing a catastrophic lahar down the mountain.As part of an extensive monitoring programme of the tephra barrier, direct current (dc) resistivity surveys were carried out on a number of lines along and across it in order to test whether the extent of the seepage could be measured (and monitored) by geophysical means. Two dimensional inversion of measured apparent resistivity data showed that between the initial measurements, made in January 2005, and February 2006, there was a gradual decrease in resistivity above the old outlet from ~ 50–60 Ωm to ~ 30 Ωm. This gave the first indication that lake water was seeping into the barrier. Between October and December 2006 there was a rapid rise in lake level to only 2 m below the top of the barrier, and a further resistivity survey in January 2007 showed that there had been a further decrease in resistivity throughout the entire barrier with values dropping to < 10 Ωm. The extent of this low resistivity indicated that the barrier was now saturated. At this stage lake water was penetrating the barrier and starting to cause erosion on its downstream side. Catastrophic collapse occurred on 18 March 2007, accompanied by a lahar in the Whangaehu river valley.Subsequent forward 3D numerical modelling of the resistivity structure of the barrier has confirmed that the observed changes in measured resistivity were directly related to the progress of seepage of lake water into the barrier.  相似文献   

3.
In this paper we analyze the onsite characterization of a geosynthetic clay liner (GCL) that serves to ensure the impermeability of a landfill cap by DC electrical methods. The imaging of the GCL geoelectrical properties is a challenging problem because it is a very thin (between 4 and 7 mm thick) and resistive layer (from 100,000 to 2,000,000 Ω·m) depending on meteorological conditions and aging. We compare results obtained using electrical resistivity tomography (ERT) using two different kinds of arrays (dipole–dipole DD and Wenner–Schlumberger) on an experimental site with engineered defects. To confirm these results and to find the real onsite GCL resistivity we have performed sampling of the posterior distribution of this parameter using vertical electrical sounding (VES) inversions. Different VES methods were extracted from ERT with DD array and converted into a Schlumberger array.As a main conclusion the dipole–dipole array provides a better resistivity resolution of the defects than the Wenner–Schlumberger array. On ERT images, the defect detection seems to be impossible if the GCL has very high resistivity, as it happened when it was put in place. Taking into account the equivalence rules, the inversions are in both cases (ERT and VES) compatible. The GCL resistivity estimated from PSO (particle swarm optimization) varies from 3.0 105 to 1.106 Ω·m depending on saturation conditions during the twenty first months of its placing. Then, the resistivity dropped to 4.104–9.104 Ω·m, indicating a probable chemical damage of the GCL due to aging. Finally the fact that the VES inversions are solved via PSO sampling allows for the detection of a very thin and resistive layer and opens the possibility of performing micro VES surveys along the landfill to detect possible GCL defects.  相似文献   

4.
I used theoretical forward models to show that a cavity embedded in a stratified sedimentary sequence can induce an equivalence problem in the ERT data inversion. Conductive top soil increases the misfit between the ground feature and the ERT model. The misfit depends on array and stratigraphy sequences. The latter induce an equivalence problem that manifests itself as wrong cavity depth positioning. The misfit is greater in the data acquired with Schlumberger array than with dipole–dipole.The ambiguity of ERT data inversion problems was tested in the detection of cavities linked to an 8th–6th century B.C. Sabine tomb, 3 m wide × 3 m long × 2 m high, excavated from a shaly gray volcanic ash (cinerite) layer covered by semi-lithoid tuff and top soil layers. In the real study I reduced the ambiguity in the inverse problem of ERT data using a priori information on geometry and resistivity of the cavity. The constrains were carried out from georadar data acquired with 80 and 200 MHz antenna. I demonstrate that this procedure has a practical application in cavity detection, and is a key to the reduction of the uncertainty inherent in the inversion process of ERT data.  相似文献   

5.
In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties.The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle–Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70–180 Ωm, thickness of 5–70 m) separated by low permeability aquitards (20–50 Ωm, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20–50 Ωm) formed by Pliocene-Lower Pleistocene clays to sandy silts with gravel lenses in agreement with borehole data. In the deepest part of the local stratigraphy, a broad low-resistivity anomaly (< 10 Ωm) was clearly mapped through the study area. By comparison with electrical borehole logs in deep oil-wells, it could be interpreted as the fresh–saltwater interface due to the presence of connate waters and brines hosted by the marine-to-transitional shales.  相似文献   

6.
It has long been recognized that the Kii Peninsula in the southwest Japan arc is peculiar in a non-volcanic region, indicated by the presence of high temperature hot springs, high terrestrial heat flow and high 3He content in hot spring gases. Geophysical and geochemical studies were carried out to understand the geotectonic environment in the southern part of the Kii Peninsula. Most of the measured 3He / 4He ratios are similar or higher than air, indicating wide spread incorporation of mantle-derived helium into meteoric water. A region with rather high 3He / 4He ratios (> 4 RA) on the west side of the Omine Mountains coincides with the occurrence of high temperature hot springs. A deep crustal resistivity structure across the Omine Mountains was imaged by wide-band magnetotelluric soundings. A 2-D inversion with N–S strike using both TM and TE modes reveals two conductors, one in the upper (3–7 km depth) and the other in lower crust (25–35 km depth) to the west of the Omine Mountains. The distribution of microearthquakes and low-frequency tremors, and the existence of seismic reflectors indicate that the large conductor in the lower crust is related to aqueous fluids derived from the Philippine Sea plate. The upper-crustal conductive zone may also reflect the aqueous fluids trapped in the upper crust, which are presumably derived from the subducting slab. Considering the occurrence of seismic events in the subducting slab beneath the southern Kii Peninsula, the aqueous fluids generated by dehydration of the slab mantle could plausibly include MORB-type helium derived from the residual lithospheric mantle. Therefore, the high temperature hot springs and high 3He emanations in hot spring gases and other geotectonic events in the southern Kii Peninsula may be due to heat flux and mantle-derived helium discharged from aqueous fluid in the upper crust.  相似文献   

7.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   

8.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

9.
72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m.The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area.After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.  相似文献   

10.
The Geodynamic Observatory Moxa, located in Thuringia/Germany, is dedicated to studies of temporal deformations of the earth's crust and of variations of the gravity field. One of the essential issues with respect to these investigations is the reduction of the hydrological impact on the data of the gravimeters, strainmeters and tiltmeters. In order to optimise the reductions, we investigated the changes in the hydrological conditions in the woody mountain slope above the observatory with time-lapse electrical resistivity tomography (ERT), and analysed the strain and tilt measurements for prominent signatures of pore pressure induced subsurface deformations.Here we present the results for two profiles – parallel and perpendicular to the slope – measured with ERT during 33 campaigns between June 2007 and April 2010. Resistivity changes and variations of apparent soil moisture, inferred from ERT sections, were found to primarily occur in the first two metres of the subsurface. These variations can be related to subsurface flow in the upper two metres induced by precipitation events and snowmelts. Trees close to the profiles only show a minimum impact on the resistivity and soil moisture changes.Furthermore, systematic hydrologically induced deformations can be observed in hodographs of strain and tilt measurements for large precipitation events (> 80 mm) and snowmelts. In the strain data a short-term (< 3 days) dilatational signal is found with an amplitude of 20 nstrain to 60 nstrain and a long-term (> 7 days) compressional signal between 40 nstrain and 180 nstrain. The preferential N–S direction of long-term deformational signals (> 1 week) is also observed in the tilt data. The direction of tilt changes (25 nrad–120 nrad) is nearly parallel to the drainage direction of the nearby Silberleite creek indicating variations of pore pressure gradients during hydrological events.The results of these hydrological studies at the Geodynamic Observatory Moxa can be used for removing the time dependent hydrological signal in strain and tilt data and, thus, better correction algorithms for hydrological impacts can be developed to enhance the value of the data for geodynamic studies.  相似文献   

11.
Historical and active seismicity in the south-western Alps (France and Italy) shows the recurrence of relatively high-magnitude earthquakes (M  5.8), like the one that recently affected the Italian Apennine range (M = 6.3 on the 30th March 2009). However, up-to-date detailed mapping of the active fault network has been poorly established. The evaluation of seismological hazard in particular in the highly populated French and Italian coastal region cannot be done without this. Here, we present a detailed study of the main active fault system, based on geological observations along the south-western flank of the Alpine arc. This N140° right-lateral strike-slip active fault system runs along the edge of the Argentera-Mercantour range and can be followed down to the Mediterranean Sea. It is evidenced by (1) Holocene offsets of glacial geomorphology witnessing ongoing fault activity since 10 ka, (2) widespread recent (10–20 Ma) pseudotachylytes featuring long term activity of the faults, (3) active landslides along the main fault zone, (4) geothermal anomalies (hot springs) emerging in the active faults, (5) ongoing low-magnitude seismic activity and (6) localization of the main historical events. In the light of our investigations, we propose a new tectonic pattern for the active fault system in the south-western Alps.  相似文献   

12.
We present a combined 3-D geoelectric and seismic tomography study conducted on the large Åknes rockslide in western Norway. Movements on the slope are strongly influenced by water infiltration, such that the hydrogeological regime is considered as a critical factor affecting the slope stability. The aim of our combined geophysical study was to identify and visualize the main shallow tension fractures and to determine their effect on hydraulic processes by comparing the geophysical results with information from borehole logging and tracer tests. To resolve the complex subsurface conditions of the highly fractured rock mass, a three-dimensional set-up was chosen for our seismic survey. To map the water distribution within the rock mass, a pattern of nine intersecting 2-D geoelectric profiles covered the complete unstable slope. Six of them that crossed the seismic survey area were considered as a single data set in a 3-D inversion. For both methods, smoothing-constraint inversion algorithms were used, and the forward calculations and parameterizations were based on unstructured triangular meshes. A pair of parallel shallow low-velocity anomalies (< 1400 m/s) observed in the final seismic tomogram was immediately underlain by two anomalies with resistivities <13 kΩm in the resistivity tomogram. In combination with borehole logging results, the low-velocity and resistivity anomalies could be associated with the drained and water-filled part of the tension fractures, respectively. There were indications from impeller flowmeter measurements and tracer tests that such tension fractures intersected several other water-filled fractures and were responsible for distinct changes of the main groundwater flow paths.  相似文献   

13.
We have combined tensor radio magnetotelluric- (RMT, 15–250 kHz) and controlled source tensor magnetotelluric (CSTMT, 1–12 kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40 km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant.The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4–180 kHz could be used. The four lowest frequencies of CSTMT in the range of 1–2.8 kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100 Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1° on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers.The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20 m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40–400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40 m and a width of several hundred metres. This is a potential aquifer that extends in approximately N–S direction for some kilometres.  相似文献   

14.
The South Poroto–Rungwe geothermal field, in the northern part of the Malawi rift, Tanzania divides in two main areas. The relatively high altitude northern area around the main Ngozi, Rungwe, Tukuyu and Kyejo volcanoes, is characterised by cold and gas-rich springs. In contrast, hot springs occur in the southern and low-altitude area between the Kyela and Livingstone faults. The isotopic signature of the almost stagnant, cold springs of the Northern district is clearly influenced by H2O–CO2(g) exchange as evidenced from negative oxygen-shifts in the order of few deltas permil. In contrast, the isotopic signature of waters discharged from the hot springs of the Southern district is markedly less affected by the H2O–CO2(g) interaction. This evidence is interpreted as an effect of the large, permanent outflow of these springs, which supports the hypothesis of a regional-scale recharge of the major thermal springs. Measurements of carbon isotope variations of the dissolved inorganic carbon of waters and CO2(g) from the Northern and Southern springs support a model of CO2(g)-driven reactivity all over the investigated area. Our combined chemical and isotopic results show that the composition of hot springs is consistent with a mixing between (i) cold surface fresh (SFW) and (ii) Deep Hot Mineralised (DHMW) Water, indicating that the deep-originated fluids also supply most of the aqueous species dissolved in the surface waters used as local potable water. Based on geothermometric approaches, the temperature of the deep hydrothermal system has been estimated to be higher than 110 °C up to 185 °C, in agreement with the geological and thermal setting of the Malawi rift basin. Geochemical data point to (i) a major upflow zone of geothermal fluids mixed with shallow meteoric waters in the Southern part of the province, and (ii) gas absorption phenomena in the small, perched aquifers of the Northern volcanic highlands.  相似文献   

15.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

16.
《Continental Shelf Research》2005,25(9):1081-1095
The mesoscale distribution and seasonal variation of the size structure of phytoplankton biomass, as measured by chlorophyll a (chl a), was studied in the Ebro shelf area (NW Mediterranean) during three different seasons: autumn, winter and summer. In autumn and summer, when the water column was, respectively, slightly or strongly stratified and nutrient concentrations were low at surface, average total chl a values were 0.31 and 0.29 mg m−3, respectively. In winter, the intrusion of nutrients into the photic zone by intense vertical mixing and strong riverine inputs, produced an increase of the total autotrophic biomass (0.76 mg m−3). In the three seasons, the main contributor to total chl a was the picoplanktonic (<2 μm) size fraction (42% in winter and around 60% in autumn and summer). The nanophytoplankton (2–20 μm) contribution to total chl a showed the lowest variability amongst seasons (between 29% and 39%). The microplanktonic (>20 μm) chl a size fraction was higher in winter (27%) than in the other seasons (less than 13%). The maximum total chl a concentrations were found at surface in winter, at depths of 40 m in autumn and between 50 and 80 m in summer. The relative contribution of the <2 μm size fraction at these levels of the water column tended to be higher than at other depths in autumn and winter and lower in summer. In autumn and winter, nutrient inputs from Ebro river discharge and mixing processes resulted in an increase on the >2 μm contribution to total chl a in the coastal zone near the Ebro Delta area. In summer, the contribution of the <2 and >2 μm chl a size fractions was homogeneously distributed through the sampling area. In autumn and summer, when deep chl a maxima were observed, the total amount of the autotrophic biomass in the superficial waters (down to 10 m) of most offshore stations was less than 10% of the whole integrated chl a (down to 100 m or to the bottom). In winter, this percentage increased until 20% or 40%. The >2 μm chl a increased linearly with total chl a values. However, the <2 μm chl a showed a similar linear relationship only at total chl a values lower than 1 mg m−3 (in autumn and summer) or 2 mg m−3 (winter). At higher values of total chl a, the contribution of the <2 μm size fraction remained below an upper limit of roughly 0.5 mg m−3. Our results indicate that the picoplankton fraction of phytoplankton may show higher seasonal and mesoscale variability than is usually acknowledged.  相似文献   

17.
With transmission electron microscopy (TEM) we observed nanometer-sized pores in four ultracataclastic and fractured core samples recovered from different depths of the main bore hole of the San Andreas Fault Observatory at Depth (SAFOD). Cutting of foils with a focused ion beam technique (FIB) allowed identifying porosity down to the nm scale. Between 40 and 50% of all pores could be identified as in-situ pores without any damage related to sample preparation. The total porosity estimated from TEM micrographs (1–5%) is comparable to the connected fault rock porosity (2.8–6.7%) estimated by pressure-induced injection of mercury. Permeability estimates for cataclastic fault rocks are 10? 21–10? 19 m2 and 10? 17 m2 for the fractured fault rock. Porosity and permeability are independent of sample depth. TEM images reveal that the porosity is intimately linked to fault rock composition and associated with deformation. The TEM-estimated porosity of the samples increases with increasing clay content. The highest porosity was estimated in the vicinity of an active fault trace. The largest pores with an equivalent radius > 200 nm occur around large quartz and feldspar grains or grain-fragments while the smallest pores (equivalent radius < 50 nm) are typically observed in the extremely fine-grained matrix (grain size < 1 μm). Based on pore morphology we distinguish different pore types varying with fault rock fabric and alteration. The pores were probably filled with formation water and/or hydrothermal fluids at elevated pore fluid pressure, preventing pore collapse. The pore geometry derived from TEM observations and BET (Brunauer, Emmett and Teller) gas adsorption/desorption hysteresis curves indicates pore blocking effects in the fine-grained matrix. Observations of isolated pores in TEM micrographs and high pore body to pore throat ratios inferred from mercury injection suggest elevated pore fluid pressure in the low permeability cataclasites, reducing shear strength of the fault.  相似文献   

18.
The large-scale deformation of high mountain slopes finds its origin in many phenomena with very different time-constants. Gravitational effect, tectonic forces, and water infiltration are generally the principal causes. However, it is always very difficult to distinguish which cause is dominant and which are their respective effects. A two-dimensional numerical experiment coupled with geophysical approach was carried out to determine (1) the effect of gravitational force on the mechanical behaviour of the “la Clapière” area, (2) a 2D-depth structure of this landslide. The results show that gravitational instability is possible and leads to destabilisation of the massif by a regressive evolution of the landslide from the bottom at 1100 m up to a height of 1800 m, which is actually the top of the La Clapière landslide. This deformation progression only concerns a depth of around 150 ± 50 m, which can be correlated to the sliding surface, as suggested by our electrical data obtained by resistivity investigations and previous studies. Our numerical results suggest that changes of the slope topography “drive” the diffusion of the plastic deformation in the mass, possibly through a channel which could be then the privileged zone along which the fracture is initiated.  相似文献   

19.
We have studied the phase transformation of forsterite to wadsleyite under shear stress at the Earth's transition zone pressure and temperature conditions. Two-step experiments were performed using a multi-anvil press. First, we hot pressed iron-free forsterite at 6 or 11 GPa and 1100 °C. Then we deformed a slab of this starting material using a direct simple shear assembly at 16 GPa and 1400 °C for 1, 15, 35, 40, or 60 min. Both the starting material and the deformed samples were characterized using optical and scanning electron microscopy including measurements of crystal preferred orientations (CPO) by electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The phase transformation occurs very rapidly, in less than 1 min, and metastable forsterite relics are not observed after deformation. The grain size of wadsleyite is slightly smaller than the forsterite starting material. The water contents obtained from FTIR analyses in forsterite and wadsleyite are 65–124 wt ppm H2O and 114–736 wt ppm H2O, respectively, which are well below water solubility at similar conditions in the presence of free water. Wadsleyite aggregates display weak CPO patterns with [1 0 0] axes concentrated at low angle to the shear direction, [0 1 0] axes perpendicular to the shear plane and nearly random [0 0 1] axes. Only a few dislocations were observed in wadsleyite with TEM. This observation is consistent with the assumption that most dislocations formed during the initial high-stress stages of these stress-relaxation experiments, were consumed in the phase transformation, probably enhancing the transformation rate. CPO patterns vary as a function of the water content: with increasing water content the density of [1 0 0] axes parallel to the shear direction decreases, and the density of [0 0 1] axes increases. Viscoplastic self-consistent modeling of CPO evolution using previously reported glide systems for wadsleyite, i.e., [1 0 0]{0 k l} and 1/2 〈1 1 1〉{1 0 1}, cannot reproduce the measured CPO, unless the [0 0 1](0 1 0) system, for which dislocations have not been observed by TEM, is also activated. In addition, wadsleyite grain growth suggests the participation of diffusion-assisted processes in deformation. Calculated anisotropies for P and S-waves using measured CPO are always below 1%. This very low anisotropy is due to both the low finite strain achieved in the experiments, which leads to weak wadsleyite CPO, and to the diluting effect of added majorite. The present experiments emphasize the importance of stress, grain size evolution and water content in the forsterite to wadsleyite phase transformation and subsequent deformation in the transition zone.  相似文献   

20.
The Narmada–Son Lineament (NSL) Zone is the second most important tectonic feature after Himalayas, in the Indian geology. Magnetotelluric (MT) studies were carried out in the NSL zone along a 130 km long NNE-SSW trending profile. The area of investigation extends from Edlabad (20°46′16″; 75°59′05″) in the South to Khandwa (21°53′51″; 76°18′05″) in the North. The data shows in general the validity of a two-dimensional (2D) approach. Besides providing details on the shallow crustal section, the 2D modeling results resolved four high conductive zones extending from the middle to deep crust, spatially coinciding with the major structural features in the area namely the Gavligarh, Tapti, Barwani-Sukta and Narmada South faults. The model for the shallow section has brought out a moderately resistive layer (30–150 Ω m) representing the exposed Deccan trap layer, overlying a conductive layer (10–30 Ω m) inferred to be the subtrappean Gondwana sediments, the latter resting on a high resistive basement/upper crust. The Deccan trap thickness varies from around a few hundred meters to as much as 1.5 km along the traverse. A subtrappean sedimentary basin like feature is delineated in the northern half of the traverse where a sudden thickening of subtrappean sediments amounting to as much as 2 km is noticed. The high resistive upper crust is relatively thick towards the southern end and tends to become thinner towards the middle and northern part of the traverse. The lower crustal segment is conductive over a major part of the profile. Considering the generally enhanced heat flow values in the NSL region, coupled with characteristic gravity highs and enhanced seismic velocities coinciding with the mid to lower crustal conductors delineated from MT, presence of zones of high density mafic bodies/intrusives with fluids, presumably associated with magmatic underplating of the crust in the zone of major tectonic faults in NSL region are inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号