首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
碰撞带前陆盆地的建立是大陆碰撞的直接标志和随后造山带构造变形的忠实记录。本文对欧亚板块与印度板块碰撞前后发育在拉萨地块上的冈底斯弧背前陆盆地,同碰撞产生的雅鲁藏布江周缘前陆盆地,以及碰撞后陆内变形产生的喜马拉雅前陆盆地的沉积地层演化以及碎屑锆石物源特征等进行了系统分析,结合前人及我们近些年的研究成果,认为冈底斯岛弧北侧发育一个典型的弧背前陆盆地系统而不是以前普遍接受的伸展盆地。除传统认为的喜马拉雅前陆盆地系统外,在碰撞造山带中还发育一个雅鲁藏布江前陆盆地系统,它是欧亚板块与印度板块碰撞以后,欧亚板块加载到印度被动大陆边缘产生的典型周缘前陆盆地。上述2个造山带前陆盆地系统的识别,大大提高了对新特提斯洋俯冲、碰撞过程的认识。造山带前陆盆地证据指示,新特提斯洋至少于140 Ma以前就已开始俯冲, 110 Ma俯冲速度开始提高,在65 Ma前后印度大陆与欧亚大陆发生碰撞,喜马拉雅山于40 Ma开始隆升,其剥蚀物质大量堆积在喜马拉雅前陆盆地中。  相似文献   

2.
喜马拉雅造山带造山模式探讨   总被引:1,自引:0,他引:1  
喜马拉雅是典型的碰撞型造山带,造山带结构构造复杂,可大致划分为以逆冲推覆构造为主的南喜马拉雅造山带和以各种伸展性构造为主的北喜马拉雅造山带,造山带内各类构造均发生过多期变形,且发生过多次缩短与伸展的构造反转,大喜马拉雅结晶杂岩系(GHC)内变形、岩浆及变质作用证明造山过程中存在渠道流作用。据此,本文提出一种由印度-欧亚大陆汇聚速率控制的多阶段造山模式:两大陆汇聚速度快时,青藏高原内形成南北向裂谷系(NSTR),喜马拉雅内经历造山过程,并在造山带中、下地壳形成作为底部拆离层的塑性层,汇聚速率慢时,青藏高原内形成共轭走滑断裂,喜马拉雅造山带内的塑性层发生松弛和重力扩散,形成渠道流,导致藏南拆离系(STDS)的启动、GHC的挤出和北喜马拉雅片麻岩穹窿(NHGD)的形成。上述的增厚与松弛均是在挤压体制下形成的,构造的反转是因挤压速率变化而产生的结构调节作用。  相似文献   

3.
秦岭南缘大巴山褶皱-冲断推覆构造的特征   总被引:14,自引:0,他引:14  
董云鹏  查显峰  付明庆  张茜  杨钊  张燕 《地质通报》2008,27(9):1493-1508
秦岭造山带南缘的大巴山巨型逆冲推覆构造主要是在秦岭造山带板块俯冲碰撞造山与中、新生代以来陆内造山过程中长期复合作用形成的。详细的室内外构造研究表明,巴山逆冲推覆构造可以巴山弧形断裂带为界划分为北大巴山逆冲推覆构造和南大巴山逆冲推覆构造。北大巴山自北而南依次由安康-武当推覆体、紫阳-平利推覆体、高桥-镇坪推覆体和高滩推覆体逆冲叠置而成。南大巴山则以镇巴-阳日断裂为界,分为北部的前陆冲断褶皱带和南部的前陆褶皱带。北大巴山主要是印支期碰撞造山作用和燕山期陆内逆冲推覆作用叠加改造的结果,南大巴山则主要是燕山期递进变形过程中的产物。构造变形北强南弱,北以冲断褶皱变形为特征,南以皱褶作用为主;北部褶皱紧闭复杂,向南渐变为宽缓的薄皮构造。逆冲作用在时序上具有由北向南扩展传递的特点。  相似文献   

4.
秦岭造山带是横贯我国中部著名的大陆造山带,是大陆构造中典型的陆内造山带。这种类型的造山带没有经历洋壳俯冲形成的那种主缝合带性质的造山带;也不是华北与扬子"板块"相互作用形成的对接或碰撞造山带;更不是所谓的复合型造山带。从秦岭造山带的组成、不同深度的结构特征、立交桥构造、盆-山转换中的结构样式、商丹带与勉略带的构造特征以及中央造山系(秦岭)中独特的南北向构造,深入讨论这些特征在秦岭造山带中的非板块构造属性;综合分析这些资料的基础上,建立了秦岭陆内造山带形成的抽拉-逆冲岩片构造(抽拉构造)模式。  相似文献   

5.
在构造和气候因素制约下的雅鲁藏布江的演化   总被引:8,自引:4,他引:8       下载免费PDF全文
雅鲁藏布江位于印度和欧亚大陆汇聚带内,其形成受到冈底斯山和喜马拉雅山差异性抬升的控制.冈底斯山抬升在先,发生在中生代晚期至新生代早期.一系列起源于冈底斯山和青藏高原的水系向南先是流入特提斯海,在特提斯海关闭后流入印度次大陆.喜马拉雅山构造抬升要晚于冈底斯山,大规模抬升发生在中新世早期,其抬升阻断了这些河流的通道,水流开始汇聚在这两个造山带之间,雅鲁藏布江由此形成.在雅鲁藏布江大拐弯地区,在海拔4 500 m处存在一个平坦的侵蚀面,并构成雅鲁藏布江大峡谷最高的一级谷肩,这表明雅鲁藏布江在下切前就在该面上流动,而且流速不大.在大拐弯以南,雅鲁藏布江的下游--布拉马普特拉河位于印度洋热带季风带内,其下切和溯源侵蚀速率很大.印度洋热带季风形成于6~9 MaB.P..因此,该河流很可能形成于该时期,要比雅鲁藏布江年轻,它在向北的溯源侵蚀的过程中袭夺了雅鲁藏布江,袭夺处可能就在大拐弯的北端,因此大拐弯是袭夺成因.  相似文献   

6.
前陆盆地沉积物记录了相邻造山带的抬升剥蚀过程,通过前陆盆地沉积物重矿物组合分析可反演相邻造山带的剥蚀历史。别尔托阔依剖面位于帕米尔-天山汇聚带前陆盆地中,其沉积物可能记录了这两个造山带的隆升和剥蚀。对该剖面新生代地层进行系统重矿物鉴定统计,获得不同层位重矿物种类及含量,分析了重矿物含量及特征指数在剖面上的变化特征。研究发现多种重矿物组合及特征指数在中新统安居安组下部发生了显著变化,可能与帕米尔在中新世早—中期的快速抬升有关。  相似文献   

7.
三叠纪是秦岭造山带全面碰撞造山的关键时期,随着扬子、秦岭和华北板块分别沿勉略、商丹缝合带的汇聚拼合, 秦岭造山带逐渐形成并从板块构造体制向陆内造山体制转化,同时强烈的造山作用控制着周缘盆地的形成与演化。文章通 过研究区的碎屑岩元素地球化学分析,对河南南召盆地上三叠统的物源区及构造背景特征进行探讨。结果表明,上三叠统 源岩成分主要为上地壳长英质火山岩;源岩经历了中等的化学风化强度,校正后CIA值指示其形成于温暖潮湿的气候和相 对较强的构造活动环境;太山庙组源区构造背景主要为大陆岛弧与活动大陆边缘,太子山组源区构造背景主要为大陆岛弧 与被动大陆边缘。根据南召盆地近源沉积特征和秦岭造山带构造演化过程推断,秦岭造山带和华北南缘是南召盆地晚三叠 世的重要物源区,前期太山庙组物源主要由北秦岭隆升基底提供,后期太子山组物源可能来自南秦岭、北秦岭和华北南缘 沉积再循环。南召盆地上三叠统物源区的转变是晚三叠世秦岭造山带逆冲推覆作用逐渐增强的体现,对研究恢复秦岭构造 带造山隆升过程和周缘盆地盆山系统演化具有重要的意义。  相似文献   

8.
北喜马拉雅及藏南伸展构造综述   总被引:6,自引:1,他引:6  
张进江 《地质通报》2007,26(6):39-649
印度与欧亚大陆碰撞发生于65Ma左右,造山作用则开始于中新世初期,该造山运动形成南喜马拉雅的逆冲推覆体系,导致喜马拉雅山脉的隆起。然而,与造山作用的同时,北喜马拉雅及藏南地区却经历了广泛的伸展作用,所形成的伸展构造包括:①北喜马拉雅地区,开始于24Ma左右的藏南拆离系(STDS);②北喜马拉雅及藏南地区,开始于14Ma左右的南北向裂谷;③北喜马拉雅穹隆带,形成时间大致与南北向裂谷相同;④广布于青藏高原、开始于中新世末期、随机分布的高角度正断层。上述不同阶段的伸展构造形成于不同机制,并在喜马拉雅造山带的发展过程中起着不同的地质作用。其中,北喜马拉雅穹隆是一种特殊的伸展构造,并可能形成于多种机制。  相似文献   

9.
在构造和气候因素制约下雅鲁藏布江的演化   总被引:5,自引:5,他引:5       下载免费PDF全文
雅鲁藏布江位于印度和欧亚大陆汇聚带内,其形成受到冈底期山和喜马拉雅山差异性抬升的控制。冈底期山抬升在先,发生在中生代晚期至新生代早期。一系列起源于冈底期山和青藏高原的水系向南先是流主特提斯海。在特提斯海关闭后流入印度次大陆。喜马拉雅山构造抬升要晚于冈底斯山,大规模抬升发生在中新世早期,其抬升阻断了这些河流的通道,水流开始汇聚在这两个造山带之间,牙鲁藏布江由此形成。在雅鲁藏布江大拐弯地区,在海拔4500m处存在一个平坦的侵蚀面,并构成雅鲁藏布江大峡谷最高的一级谷肩,这表明雅鲁藏布江在下切前就在该面上流动,而且流速不大。在大拐弯以南,雅鲁藏布江的下游-布拉马普特拉河位于印度洋热带季风带内,其下切和源侵蚀速率很大。印度洋热带季风形成于6-9MaB.P.。因此,该河流很可能形成于该时期,要比雅鲁藏布江年轻,它在向北的溯源侵蚀的过程中袭夺了雅鲁藏布江,袭夺处可能就大拐弯的北端,因此大拐弯是袭夺成因。  相似文献   

10.
张丁丁  张衡 《地学前缘》2022,29(1):303-315
大陆岩石圈深俯冲作用是地球科学领域的前沿热点,榴辉岩的折返机制是板块构造及动力学的关键科学问题。全球著名的大陆造山带中榴辉岩的p-T轨迹呈现差异性折返特征,为了揭示榴辉岩的折返机制,本文结合变质岩石学和地球物理学研究,选取3个典型大陆造山带——中生代—新生代的阿尔卑斯造山带、中生代的苏鲁—大别造山带和新生代的喜马拉雅造山带中的榴辉岩进行阐述。在阿尔卑斯造山带地区,地球物理研究结果发现,欧洲板块的俯冲造成了Adria地区下方的岩石圈存在明显厚度差异。同时,阿尔卑斯造山带Doria Maria和Pohorje地区以及Pohorje地区内部,榴辉岩折返历史也不尽相同,原因可能是亚德里亚大洋岩石圈断离后不同期次的逆冲推覆作用使其差异性斜向挤出。苏鲁—大别造山带中榴辉岩的快速折返,原因可能是华南板块与华北板块碰撞后岩石圈的拆沉或断离作用。在喜马拉雅造山带,西构造结和中喜马拉雅榴辉岩的折返存在差异性。在西构造结,那让和卡甘榴辉岩呈现不同的p-T轨迹和折返速率,变质岩石学和地球物理研究结果都表明它们的差异性折返很可能与印度-欧亚大陆碰撞过程中的构造挤压作用以及印度大陆岩石圈的断离作用有关。喜马拉雅造山带是年轻的正在进行造山活动的造山带,相较于古老的苏鲁-大别造山带,它更适合变质岩石学和地球物理学的综合研究。因此西构造结高压/超高压榴辉岩的折返机制——构造挤压和俯冲板块断离可应用于全球造山带。  相似文献   

11.
《International Geology Review》2012,54(12):1151-1158
The Kuqa depression along the northern flank of the Tarim basin is filled with a thick sequence of Neogene and Quaternary coarse elastic continental sediments. This structural depression is part of a large foreland basin that lies south of the Tianshan—an orogenic belt of intracontinental convergence resulting from the northward propagation of stress following the collision of India with the southern margin of Eurasia.  相似文献   

12.
我国的一些造山带的侧向挤出构造   总被引:9,自引:1,他引:8       下载免费PDF全文
王二七  苏哲  许光 《地质科学》2009,44(4):1266-1288
尽管大陆只占地球表面的三分之一,但是人类生活在大陆上,大部分资源也来自于大陆,因此大陆构造研究有特别的意义,我国的地质前辈们为此做出了重要的贡献。然而,陆壳具有高度的非均质性,因此大陆构造要比大洋构造复杂的多,认识其演化规律极其困难,但是人类正在通过不同的途径朝这个目标前进。地块的侧向挤出是大陆构造的主要形式。尽管大规模的地块侧向挤出是否发生在青藏高原主体存在很大的争议,但是有证据显示地块的侧向挤出广泛地发生在青藏高原周边以及我国其它的一些造山带内,呈现出不同的规模、位移量和变形特征。位于滇西三江断裂带内的兰坪-思茅盆地在印度和华南第三纪的压扭性相互作用下向南挤出; 沿喜马拉雅西构造结发生的地块侧向挤出形成于早第三纪印度与欧亚大陆之间的南北向碰撞,最新的挤出地体是塔里木盆地; 雪峰地块向南的侧向挤出受控于华南地区北西-南东向区域性扭性构造作用; 沿扬子地块北缘发生的地块侧向挤出形成于扬子地块与秦岭造山带中生代晚期的南北向挤压,造成四川盆地发生向西的侧向挤出; 沿秦岭-大别山发生的地块侧向挤出发生在中生代,经历了超高压变质作用的下地壳随扬子地块的挤入向东运动,最后在桐柏-大别山隆升到地表,而中上地壳包括留凤关复理石沉积和碧口地块向西挤出。桐柏-大别山和青藏高原均形成于大陆的碰撞,地壳都曾发生过大规模的增厚。因此,有理由相信青藏高原的下地壳和桐柏-大别山的下地壳结构和构造是一样的,要研究两者物质组成和赋存状态以及运动和变形特征可以互相参考和借鉴。例如: 5·12汶川大地震的发生引发了对高原下地壳流变的关注和争论。上述桐柏-大别山中生代下地壳的侧向挤出就是通道流,由此证明青藏高原下地壳通道流是存在的; 而青藏高原下地壳和桐柏-大别山一样,一定是由壳内花岗岩、活化的前寒武结晶基底、变质核杂岩以及混入的上地幔物质组成。  相似文献   

13.
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall, and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.  相似文献   

14.
CENOZOIC FAULTING ALONG THE SOUTHEASTERN EDGE OF THE TIBETAN PLATEAU IN THE YANYUAN AREA AND ITS TECTONIC IMPLICATIONS  相似文献   

15.
Structural evolution of the Kamchatka–Aleutian junction area in late Mesozoic and Tertiary was generally controlled by (1) the processes of subduction in Kronotskiy and Proto-Kamchatka subduction zones and (2) collision of the Kronotskiy arc against NE Eurasia margin. Two structural zones of the pre-Pliocene age and six structural assemblages are recognized in studied region. 1: Eastern ranges zone comprises SE-vergent thrust folded belt, which evolved in accretionary and collisional setting. Two structural assemblages (ER1 and ER2), developed there, document shortening in the NW–SE direction and in the N–S direction, respectively. 2: Eastern Peninsulas zone generally corresponds to Kronotskiy arc terrane. Four structural assemblages are recognized in this zone. They characterize (1) precollisional deformations in the accretionary wedge (EP1) and in the fore-arc basin and volcanic belt (EP2), and (2) syn-collisional deformation of the entire Kronotskiy terrane in plunging folds (EP3) and deformations in the foreland basin (EP4). Analysis of paleomagnetic declinations versus present day structural strike in the Kronotskiy arc terrane shows that originally the arc was trending from west to east. Relative position of the accretionary wedge, fore-arc basin and volcanic belt, as well as northward dipping thrusts in accretionary wedge indicate, that a northward dipping subduction zone was located south of the arc. The accretionary wedge developed from the Late Cretaceous through the Eocene, and it implies that the subduction zone maintained its direction and position during this time. It implies that Kronotskiy arc was neither a part of the Pacific nor Kula plates and was located on an individual smaller plate, which included the arc and Vetlovka back-arc basin. Motion of the Kronotskiy arc towards Eurasia was connected only with NW-directed subduction at Kamchatka margin since Middle Eocene (42–44 Ma). Emplacement of the Kronotskiy arc at the Kamchatka margin occurred between Late Eocene and Early Miocene. This is based on the age of syn-collisional plunging folds in Kronotskiy terrane, and provenance data for the Upper Eocene to Middle Miocene Tyushevka basin, which indicate in situ evolution of the basin with respect to Kamchatka. Collision was controlled by the common motion of the Kronotskiy arc with Pacific plate towards the northwest, and by the motion of the Eurasian margin towards the south. The latter motion was responsible for the southward deflection of the western part of the Kronotskiy arc (EP3 structures), and for oblique transpressional structures in the collisional belt (ER2 structures).  相似文献   

16.
昆仑造山带二叠纪岩相古地理特征及盆山转换探讨   总被引:8,自引:1,他引:7       下载免费PDF全文
昆仑造山带基本构造-地层格架主要奠基于古生代,是早古生代和晚古生代多次洋陆转换、碰撞造山的结果。早中二叠世是晚古生代昆仑多岛洋盆(昆南洋)伸展裂陷最为强烈期,海相沉积广布,昆北为活动边缘裂谷,大部分区域为滨浅海相沉积,局部为火山盆地相沉积;昆中洋岛大部分为海水淹没,发育滨浅海相沉积;康西瓦—木孜塔格—阿尼玛卿一线及其以北昆南区为深海-半深海相沉积。早中二叠世总体表现为南深北浅的多岛小洋盆构造-古地理格局。中二叠世晚期昆仑地区发生了一次显著的汇聚作用(华力西运动),洋盆和活动大陆边缘裂谷闭合,隆升遭受剥蚀,完成了一次盆山转换。晚二叠世早期,大部分地区仍为剥蚀区,局部地区形成陆相红色碎屑岩建造,其后东昆仑东部海水从东南进入,西昆仑东部海水从西北进入,在较局限的区域内沉积了滨浅海相碎屑岩和碳酸盐岩沉积,进入了另一个盆山发展时期。笔者通过多年的野外观察、分析测试和综合研究,结合覆盖全区的1∶25万区域地质调查资料及其他前人研究成果,选择昆仑造山带晚古生代盆山转换关键时期——二叠纪,对其地层、岩相特征及构造古地理环境进行研究,并探讨了其构造演化,以期对提高昆仑造山带的研究水平和指导找矿工作有所禆益。  相似文献   

17.
吐哈盆地中央构造带正反转演化特征   总被引:5,自引:3,他引:5  
吐哈盆地中央构造带由火焰山构造和七克台构造组成。中央构造带形成于三叠纪晚期至侏罗纪早期,表现为伸展构造特征,生长断层上盘地层厚度明显大于下盘,并于断层上盘所在的台北凹陷形成沉降中心。晚侏罗世,由于拉萨陆块与欧亚大陆的碰撞作用导致吐哈盆地由伸展盆地转变为挤压盆地,中央构造带也于此时发生构造反转,由早期的伸展正断层转变为挤压逆断层。发生于55Ma的喜山构造事件对天山地区产生了深刻的影响,但影响时间略有滞后,大致发生在晚渐新世至早中新世,中央构造带即在此次构造事件中强烈变形,逆冲出露于地表。  相似文献   

18.
造山带隆起剥蚀过程与沉积记录   总被引:1,自引:0,他引:1       下载免费PDF全文
大别山造山带是中生代碰撞造山作用的产物,其隆起过程中形成了合肥盆地。本文对合肥盆地侏罗系碎屑岩进行了成分分析,发现砾岩中有两类榴辉岩,一类为高压变质榴辉岩,另一类为超高压变质榴辉岩。对砂岩中碎屑白云母的成分分析表明,指示高压变质作用的多硅白云母在较低层位已大量出现。重建的碎屑物注入顺序为:非超高压变质岩—高压变质岩—超高压变质岩。结合变质岩石学研究和地球物理观测资料重建的大别山造山带内部结构,可进一步重建大别山的剥蚀历史:大别山造山带最先(三尖铺组沉积初期)受到剥蚀的是非超高压变质的片岩、片麻岩及大理岩,高压变质岩折返到地表受到剥蚀不晚于中侏罗世初期(三尖铺组沉积早期),而超高压变质岩折返到地表经受剥蚀的时间稍早于中侏罗世中期(凤凰台组沉积初期)。天山是典型的陆内造山带,其隆起是新生代以来印度板块与欧亚板块碰撞的一种远程效应。本文对天山发育的花岗岩磷灰石裂变径迹分析,并对南侧的塔里木盆地北部古近系及新近系沉积岩进行了碎屑岩物源分析,在新的磁性地层学格架中讨论了天山的隆起剥蚀历史。砾石组分的突然变化发生在75~35 Ma,26~17 Ma和12~8 Ma间,从中天山物源区逐渐变为南天山物源区,12 Ma后变为以南天山为主要物源区。砂岩及重矿物组分变化表明,物源在124 Ma、26(~24)Ma及15(~12)Ma时发生过变化。磷灰石裂变径迹则进一步揭示了天山的3阶段差异性隆起历史:天山的早期隆起发生在124~80 Ma间,从中天山和南天山的交界处开始并向南扩展;第二次隆起发生在大约100~60 Ma间,从中天山开始向南扩展;第三次隆起从大约50 Ma开始,并向北南两侧扩展,至大约30 Ma时扩展到北天山,约20 Ma时扩展至南天山;其后,南天山在15(~12)Ma时发生了独立的隆起事件。本文的两个研究实例表明,盆地的充填符合计算机数据结构的堆栈过程,但造山带的隆起剥蚀却会出现明显的差异性。不能简单地说造山带的剥蚀和盆地的充填具镜像对称关系,这有可能导致错误的认识,一定要具体事例具体分析。  相似文献   

19.
The Late Tertiary history of the Mediterranean region exemplifies processes of ocean basin closure and continental collision, as determined from integrated land and marine evidence. During the Mesozoic–Early Tertiary, tectonic settings were dominated by evolution of Neotethys. This ocean generally widened eastwards, with a number of oceanic strands in the Eastern Mediterranean area. Great diversity of tectonic settings and palaeo-environments developed during the Tertiary closure history of these oceanic basins. In the Eastern Mediterranean region, more northerly Neotethyan strands were closed by the Mid Tertiary, while oceanic crust remained in the south in the present Eastern Mediterranean Sea area. Northwards subduction of the remaining southerly Neotethyan strand was probably active by the Early Miocene. Different areas exhibit different stages of convergence and ocean basin closure. In the east, the amalgamated Eurasian plate had collided with the Arabian margin (Africa) by the Late Miocene, while oceanic crust still persisted further west. Steady-state subduction during the Late Tertiary gave rise to the Mediterranean ridge, as a substantial mud-dominated accretionary wedge. In the Aegean area, sufficient northward subduction took place to activate arc volcanism and pervasive back arc extension, short of marginal basin opening. In the easternmost Mediterranean, only limited subduction took place, associated with supra-subduction zone extension (e.g. in Cyprus). Today, steady state-subduction continues only locally, where vestiges of Neotethys remain (e.g. Herodotus abyssal plain). In the Western Mediterranean area, suturing of the African and Eurasian plates initially took place in the Betic region (Early–Mid Tertiary), where the Neotethys had existed only as a narrow connection with the Central North Atlantic. In the Central Mediterranean region, where the Western Neotethys was wider, northward subduction was active, apparently as early as the Late Cretaceous. In a widely accepted interpretation, an Andean-type magmatic arc developed along the southern margin of Europe and was then rifted off in the Late Oligocene-Early Miocene, to form the Corsica-Sardinia Block, opening the North Balearic marginal basin in its wake. The migrating subduction zone and microcontinent then collided diachronously with North Africa-related continental units (North Africa and Apulia) from Late Oligocene-Early Miocene, giving rise to collisional thrust belts in the Northern and Southern Apennines and along the North African continental margin (i.e. the Maghrebian chain) to the Betic-Rif area. From the Early Miocene onwards, a separate subduction system became active, related to removal of Neotethyan oceanic crust to the southeast (Ionian Sea), fueling suprasubduction zone extension and opening of the Tyrrhenian Sea. ‘Orogenic collapse’ is an alternative mechanism of such extension, and is widely believed to have caused divergent thrusting in the Betic and Rif regions of the westernmost Mediterranean, at the same time as crustal extension and subsidence of the Alboran Sea.  相似文献   

20.
多岛海型造山作用——以华南印支期造山带为例   总被引:24,自引:1,他引:23  
大陆造山带大多数形成于弧弧碰撞及其弧后盆地衰缩作用,其古地理格局为多岛海。今日的东南亚是多岛海大地构造的现实模型,其中欧亚大陆和澳大利亚的板块边界位于印度尼西亚的班达—巽它弧以南和西太平洋马里亚纳弧以东。介于前缘弧和欧亚大陆之间的是众多的残余弧和弧后盆地。其中有些盆地仍然是海底扩张的中心,一些是不再活动的海盆,也有些海盆正在遭受挤压作用,而一些海盆则已经完全被弧后衰缩作用所消减。位于这些盆地之间的是残余弧,沉降的残余弧顶部的沉积层序类似于被动陆缘。华南大地构造可用多岛海模式予以解释。华南造山带的大地构造相分析、沉积相分析和古地磁等综合研究结果表明,它们大多数是弧弧碰撞作用所形成的碰撞型造山带,二叠—三叠纪的古地理存在着与东南亚今天类似的多岛海格局。临沧弧和华夏弧可能为华南多岛海的前缘弧,起着与今天欧亚大陆的印度尼西亚弧相类似的作用。多岛海古地理格局可能出现于泥盆纪以后,华南板块发生裂解,所形成的弧后盆地大多数于晚三叠世到早侏罗世发生衰缩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号