首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The remote-sensing satellite ERS-1, launched in 1991 to study the Earth's environment, was placed on a geodetic (168-day repeat) orbit between 1994 April and 1995 March to map, through altimetric measurements, the gravity field over the whole oceanic domain with a resolution of 8 km at the equator in both along-track and cross-track directions. We have analysed the precise altimeter data of the geodetic mission, and, by also using one year of Topex-Poseidon altimeter data, we have computed a global high-resolution mean sea surface. The various steps involved in pre-processing the ERS-1 data consisted of correcting the data for environmental factors, editing, and reducing, through crossover analyses, the radial orbit error, which directly affects sea-surface height measurements. For this purpose, we adjusted sinusoids at 1 and 2 cycle rev−1 along the ERS-1 profiles in order to minimize crossover differences between ERS-1 and yearly averaged Topex-Poseidon profiles. In effect, the orbit of Topex-Poseidon is very accurately determined (within 2–3 cm for the radial component), so Topex-Poseidon altimeter profiles can serve as a reference to reduce the ERS-1 radial orbit error. The ERS-1 residual orbit error was further reduced through a second crossover analysis between all ascending and descending profiles of the geodetic mission. The along-track ERS-1 and Topex-Poseidon data were then interpolated over the whole oceanic domain on a regular grid of 1/16°× 1/16° size. The mapping of the gridded sea-surface heights reveals the very fine structure of the marine geoid, up until now unknown at a global scale. This new data set will be most useful for marine geophysical and tectonic investigations.  相似文献   

2.
Summary. A total of 3708 1 × 1° free-air gravity anomaly averages have been used to construct a new 1 × 1° gravimetric geoid of the Northwest Pacific Ocean. The 1 × 1° averages are based on a compilation of 147000 surface ship and pendulum gravity measurements. The gravimetric geoid reveals information in the geoid of the Northwest Pacific not present in currently used satellite derived models. The RMS difference between the 1 × 1° geoid and satellite derived models is about ±6 m. Difference geoid undulations range from a maximum of +19 m over the Hawaiian ridge to a minimum of −31 m over the junction of the Kuril and Aleutian trenches. The Hawaiian swell is associated with a geoidal high of up to +15 m with wavelengths of about 2200 km and the topographic rises seaward of deep-sea trenches are associated with geoidal highs of up to 4m with wavelengths of about 220–900 km. The main difference between the gravimetric geoid and the satellite derived models occurs over the Pacific basin where discrepancies reach +10 m with wavelengths of 4000 km. The agreement between the gravi-metric geoid and Skylab-4 and Geos-3 altimeter data is close for wavelengths greater than about 300 km but poor for shorter wavelengths.  相似文献   

3.
b
Spherical harmonics are orthonormalized using the Gram-Schmidt process in a function space. The problem of linear dependence of spherical harmonics over the oceans is studied using the Gram matrices and consequently three sets of orthonormal (ON) functions have been constructed. For the process an efficient formula for computing inner products of spherical harmonics has been developed. Important spectral properties of the ON functions are addressed. The ON functions may be used for representing the sea surface topography (SST) in the analysis of satellite altimeter data. The geoid error can be transformed to a representation by the ON functions and hence the comparison of powers of the geoid error and the SST signal only over the oceans is possible, leading to a better way of determining the cut-off frequency of the SST in the simultaneous solution using satellite altimeter data. As a case study, the modified Levitus SST is expanded into the ON functions. The results show that 99.90 per cent of that signal's energy is contained within degree 24 of the orthonormal functions. Such expansions also render better spectral behaviour of oceanic signals as compared to that from spherical harmonic expansions. The study shows that these generalized Fourier functions are suitable for spectral analyses of oceanic signals and they can be applied to future altimetric mission where the geoid and the SST are to be recovered.  相似文献   

4.
The ERS-1 satellite, launched in 1991, has provided altimetric observations of the Greenland Ice Sheet and 80 per cent of the Antarctica Ice Sheet north of 82°S. It was placed in a geodetic (168-day repeat) orbit between April 1994 and March 1995, yielding a 1.5  km across-track spacing at latitude 70° with a higher along-track sampling of 350  m. We have analysed the waveform altimetric data from this period to compute maps with a 1/30° grid size. Data processing consists of correcting for environmental factors and editing and retracking the waveforms. A further step consists of reducing the radial orbit error through crossover analysis and correcting the slope error to second order. The high-resolution topography of both ice sheets reveals numerous details. A kilometre-scale surface roughness running at 45° from the flow direction is the dominant topographic characteristic of both continents. Antarctica also exhibits many scars due to local flow anomalies. Several physical processes can be identified: abrupt transitions from deformation to sliding and vice versa, and impressive strike-slip phenomena, inducing en echelon folds.  相似文献   

5.
Summary. A new set of 1×1° mean free-air anomalies in the Indian Ocean is determined on the basis of previously published free-air anomaly maps (Talwani & Kahle) and the most recent Lamont surface ship gravity measurements. The data are then used to compute a (total) 1×1° gravimetric Indian Ocean geoid. The computation is carried out by combining the Goddard Space Flight Center (GSFC) GEM-6 geoid and a difference geoid that corresponds to the differences between the set of 1×1° surface gravity values and the GEM-6 gravity anomalies. The difference geoid is highest over the Madagascar Ridge (+ 20 m) and lowest over the Timor Trough (-30 m). The total geoid is compared with GEOS-3 radar altimeter derived geoid profiles and geophysical implications are discussed.  相似文献   

6.
空间信息技术支持下的沿海风能资源评价   总被引:7,自引:0,他引:7  
沿海地区是我国重要的风能资源区,由于近地面风场具有很强的时空变异性,给风能资源定量评价带来了很大困难.空间信息技术的发展为我们提供了新的视角和手段,近年来,利用星载合成孔径雷达(SAR)进行沿海风场信息遥感反演已从试验逐步走向成熟,它以布拉格原理为依据,建立合成孔径雷达后向散射系数与海面风场之间的关系,反演风速、风向等关键参数,并进而对研究区风能资源进行准确的定量评价.本文回顾了本领域国内外研究进展,重点阐述了风场要素反演的基本方法和校验手段,探讨了目前存在的一些问题和改进方法,并对本方法在我国的应用前景作了展望.  相似文献   

7.
We present a new numerical method to describe the internal dynamics of planetary mantles through the coupling of a dynamic model with the prediction of geoid and surface topography. Our tool is based on the simulation of thermal convection with variable viscosity in a spherical shell with a finite-volume formulation. The grid mesh is based on the 'cubed sphere' technique that divides the shell into six identical blocks. An investigation of various numerical advection schemes is proposed: we opted for a high-resolution, flux-limiter method. Benchmarks of thermal convection are then presented on steady-state tetrahedral and cubic solutions and time-dependent cases with a good agreement with the few recent programs developed to solve this problem.
A dimensionless framework is proposed for the calculation of geoid and topography introducing two dimensionless numbers: such a formulation provides a good basis for the systematic study of the geoid and surface dynamic topography associated to the convection calculations. The evaluation of geoid and surface dynamic topography from the gridded data is performed in the spectral domain. The flow solver is then tested extensively against a precise spectral program, producing response functions for geoid as well as bottom and surface topographies. For a grid mesh of a reasonable size (6 × 64 × 64 × 64) a very good agreement (to within ∼1 per cent) is found up to spherical harmonic degree 15.  相似文献   

8.
We present a regional surface waveform tomography of the Pacific upper mantle, obtained using an automated multimode surface waveform inversion technique on fundamental and higher mode Rayleigh waves, to constrain the   VSV   structure down to ∼400 km depth. We have improved on previous implementations of this technique by robustly accounting for the effects of uncertainties in earthquake source parameters in the tomographic inversion. We have furthermore improved path coverage in the South Pacific region by including Rayleigh wave observations from the French Polynesian Pacific Lithosphere and Upper Mantle Experiment deployment. This improvement has led to imaging of vertical low-velocity structures associated with hotspots within the South Pacific Super-Swell region. We have produced an age-dependent average cross-section for the Pacific Ocean lithosphere and found that the increase in   VSV   with age is broadly compatible with a half-space cooling model of oceanic lithosphere formation. We cannot confirm evidence for a Pacific-wide reheating event. Our synthetic tests show that detailed interpretation of average   VSV   trends across the Pacific Ocean may be misleading unless lateral resolution and amplitude recovery are uniform across the region, a condition that is difficult to achieve in such a large oceanic basin with current seismic stations.  相似文献   

9.
This paper presents estimates of detailed seasonal variations in ice-flow velocity for Shirase Glacier calculated using data obtained by Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR). We used 12 pairs of images (44-day repeat cycle) over the interval from 30 April 1996 to 1 July 1998 to estimate ice-flow fields using an image correlation method. Geometric registration was performed with reference to the RADARSAT Antarctic Mapping Project (RAMP) image dataset. Error analysis based on feature mismatch indicated an absolute error of ±0.30 km/a and relative error of ±0.04 km/a in the estimated flow velocity. The obtained ice-flow velocity increases rapidly from the upstream region (1.18 km/a) to the grounding line, where it becomes stagnant (2.32 km/a), before accelerating gradually to 2.62–2.82 km/a in the downstream region and then increasing to 3.05–3.50 km/a at the terminus of the floating ice tongue. The ice-flow velocities in the downstream region are highly variable, depending on both the distance from the grounding line and the observed epoch (season). Most of the obtained seasonal variations in ice-flow velocity at the floating ice tongue are within the range of the associated error estimate, but the annual difference between 1997 (3.11 km/a) and 1998 (3.50 km/a) is significant, reflecting a possible acceleration in the ice-flow velocity in association with the disappearance of the floating ice tongue between April and May of 1998. In terms of the summer–winter difference in averaged air temperature, the large difference recorded in 1997 (17.0 °C) relative to 1996 (13.9 °C) corresponds to a reduced ice-flow velocity in 1997 (approximately 0.20 km/a) relative to that in 1996 (approximately 0.30 km/a), indicating interactions between air, sea ice, and glacier flow in Lützow-Holm Bay.  相似文献   

10.
We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ∼ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with   VSH > VSV   starting at ∼80 km under oceanic regions and ∼200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a   VSV > VSH   signature at ∼150–300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400–700 km depth), regions of subducted slab material are associated with   VSV > VSH   , while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric   VSH > VSV   in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that   VSH > VSV   is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes.  相似文献   

11.
The Canary Islands swell: a coherence analysis of bathymetry and gravity   总被引:2,自引:0,他引:2  
The Canary Archipelago is an intraplate volcanic chain, located near the West African continental margin, emplaced on old oceanic lithosphere of Jurassic age, with an extended volcanic activity since Middle Miocene. The adjacent seafloor does not show the broad oceanic swell usually observed in hotspot-generated oceanic islands. However, the observation of a noticeable depth anomaly in the basement west of the Canaries might indicate that the swell is masked by a thick sedimentary cover and the influence of the Canarian volcanism. We use a spectral approach, based on coherence analysis, to determine the swell and its compensation mechanism. The coherence between gravity and topography indicates that the swell is caused by a subsurface load correlated with the surface volcanic load. The residual gravity/geoid anomaly indicates that the subsurface load extends 600 km SSW and 800 km N and NNE of the islands. We used computed depth anomalies from available deep seismic profiles to constrain the extent and amplitude of the basement uplift caused by a relatively low-density anomaly within the lithospheric mantle, and coherence analysis to constrain the elastic thickness of the lithosphere ( Te ) and the compensation depth of the swell. Depth anomalies and coherence are well simulated with Te =28–36 km, compensation depth of 40–65 km, and a negative density contrast within the lithosphere of ∼33 kg m−3. The density contrast corresponds to a temperature increment of ∼325°C, which we interpret to be partially maintained by a low-viscosity convective layer in the lowermost lithosphere, and which probably involves the shallower parts of the asthenosphere. This interpretation does not require a significant rejuvenation of the mechanical properties of the lithosphere.  相似文献   

12.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

13.
The relation between the seafloor electric field and the surface magnetic field is studied. It is assumed that the fields are created by a 2-D ionospheric current distribution resulting in the E-polarization. The layered earth below the sea water is characterized by a surface impedance. The electric field at the seafloor can be expressed either as an inverse Fourier transform integral over the wavenumber or as a spatial convolution integral. In both integrals the surface magnetic field is multiplied by a function that depends on the depth and conductivity of the sea water and on the properties of the basement. The fact that surface magnetic data are usually available on land, not at the sea surface, is also considered. Test computations demonstrate that the numerical inaccuracies involved in the convolution method are negligible. The theoretical equations are applied to calculate the seafloor electric fields due to an ionospheric line current or associated with real magnetic data collected by the IMAGE magnetometer array in northern Europe. Two different sea depths are considered: 100 m (the continental shelf) and 5 km (the deep ocean). It is seen that the dependence of the electric field on the oscillation period is weaker in the 5 km case than for 100 m.  相似文献   

14.
Observations of gravity can be aliased by virtue of the logistics involved in collecting these data in the field. For instance, gravity measurements are often made in more accessible lowland areas where there are roads and tracks, thus omitting areas of higher relief in between. The gravimetric determination of the geoid requires mean terrain-corrected free-air anomalies; however, anomalies based only on the observations in lowland regions are not necessarily representative of the true mean value over the topography. A five-stage approach is taken that uses a digital elevation model, which provides a more accurate representation of the topography than the gravity observation elevations, to reduce the unrepresentative sampling in the gravity observations. When using this approach with the Australian digital elevation model, the terrain-corrected free-air anomalies generated from the Australian gravity data base change by between 77.075 and −84.335 mgal (−0.193 mgal mean and 2.687 mgal standard deviation). Subsequent gravimetric geoid computations are used to illustrate the effect of aliasing in the Australian gravity data upon the geoid. The difference between 'aliased' and 'non-aliased' gravimetric geoid solutions varies by between 0.732 and −1.816 m (−0.058 m mean and 0.122 m standard deviation). Based on these conceptual arguments and numerical results, it is recommended that supplementary digital elevation information be included during the estimation of mean gravity anomalies prior to the computation of a gravimetric geoid model.  相似文献   

15.
We have analysed the fundamental mode of Love and Rayleigh waves generated by 12 earthquakes located in the mid-Atlantic ridge and Jan Mayen fracture zone. Using the multiple filter analysis technique, we isolated the Rayleigh and Love wave group velocities for periods between 10 and 50  s. The surface wave propagation paths were divided into five groups, and average group velocities calculated for each group. The average group velocities were inverted and produced shear wave velocity models that correspond to a quasi-continental oceanic structure in the Greenland–Norwegian Sea region. Although resolution is poor at shallow depth, we obtained crustal thickness values of about 18  km in the Norwegian Sea area and 9  km in the region between Svalbard and Iceland. The abnormally thick crust in the Norwegian Sea area is ascribed to magmatic underplating and the thermal blanketing effect of sedimentary layers. Maximum crustal shear velocities vary between 3.5 and 3.9  km  s−1 for most paths. An average lithospheric thickness of 60  km was observed, which is lower than expected for oceanic-type structure of similar age. We also observed low shear wave velocities in the lower crust and upper mantle. We suggest that high heat flow extending to depths of about 30  km beneath the surface can account for the thin lithosphere and observed low velocities. Anisotropy coefficients of 1–5 per cent in the shallow layers and >7 per cent in the upper mantle point to the existence of polarization anisotropy in the region.  相似文献   

16.
During the last glacial cycles, global sea level dropped several times by about 120 m and large ice sheets covered North America, northern Europe and Antarctica during the glacial stages. The changes in the iceocean mass balance have displaced mantle material mainly via viscous flow, and the perturbation of the equilibrium figure of the Earth by glacial isostatic adjustment is still observable today in timedependent changes of gravitational and rotational observations. Contemporary iceocean mass balance from volume changes of polar ice caps also contributes to secular variations of the Earth's gravitational field.
In the near future, several satellite gravity missions will significantly improve the accuracy of the observed timedependent gravitational field. In view of the expected improvements in the observations, we predict glacially induced perturbations of the gravitational field, induced by Late Pleistocene and contemporary ice volume changes, for a variety of radial mantle viscosity profiles. We assess the degree of uncertainty for the glacially induced contributions to gravitational and rotational parameters, both in the spectral and the spatial domain.
Predictions of power spectra for the glacially induced freeair gravity and geoid anomalies are about one order of magnitude lower than the observed values, and uncertainties arising from different plausible viscosity profiles are around 0.150.4 mGal and 0.21.5 m, respectively. Uncertainties from different ice models are of secondary importance for the predicted power spectra. Predicted secular changes in geoid anomalies in formerly glaciated areas are mainly controlled by the viscosity profile and contemporary ice volume changes. We also show that the simple threelayer viscosity profiles currently employed for the majority of postglacial rebound studies represent a limited subset for model predictions of the timedependent gravitational field.  相似文献   

17.
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceano-graphic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations, Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.  相似文献   

18.
A new numerical approach to the solution of waves propagating in a fluid-saturated medium, using Biot's theory as a foundation, has important implications for oil reservoir management and earthquake prediction. A numerical scheme is developed using an exponential transformation that explicitly treats the petrophysical and fluid properties of the medium within the framework of a generalized model. The scheme accounts for wave dissipation and velocity modifications. The numerical solution is used to perform numerical experiments to study the dynamic behaviour of waves in a fluid-saturated medium at well-logging frequencies (15 kHz). The results from the numerical experiments indicate that the degree of saturation by a high-viscosity fluid (HVF) such as oil, the temperature and the porosity of a medium strongly influence the spectral power distribution, frequency content and the velocity of waves propagating through the medium. An increase in HVF saturation causes enhanced attenuation of the low-frequency components, and increases the seismic velocity. An increase in porosity, however, enriches the low-frequency components and decreases the seismic velocity. A spectral quantification procedure is suggested and used to obtain information about the petrophysical and fluid properties of the medium from the spectral characteristics of the transmitted waveform. The procedure involves segmentation of the energy or power distribution of the transmitted waveforms into specified energy bands. The energy or power in these bands is then estimated. The extracted quantification variables are found to have strong correlations with the degree of HVF saturation, and the temperature and the porosity of the medium.  相似文献   

19.
The coupled plate interface of subduction zones—commonly called the seismogenic zone—has been recognized as the origin of fatal earthquakes. A subset of the after-shock series of the great Antofagasta thrust-type event (1995 July 30; M w = 8.0) has been used to study the extent of the seismogenic zone in northern Chile. To achieve reliable and precise hypocentre locations we applied the concept of the minimum 1-D model, which incorporates iterative simultaneous inversion of velocity and hypocentre parameters. The minimum 1-D model is complemented by station corrections which are influenced by near-surface velocity heterogeneity and by the individual station elevations. By relocating mine blasts, which were not included in the inversion, we obtain absolute location errors of 1  km in epicentre and 2  km in focal depth. A study of the resolution parameters ALE and DSPR documents the importance of offshore stations on location accuracy for offshore events. Based on precisely determined hypo-centres we calculate a depth of 46  km for the lower limit of the seismogenic zone, which is in good agreement with previous studies for this area. For the upper limit we found a depth of 20  km. Our results of an aseismic zone between the upper limit of the seismogenic zone and the surface correlates with a detachment zone proposed by other studies; the results are also in agreement with thermal studies for the Antofagasta forearc region.  相似文献   

20.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号