首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic signals transmitted from the ATOC source on Pioneer Seamount off the coast of California have been received at various sites around the Pacific Basin since January 1996. We describe data obtained using bottom-mounted receivers, including US Navy Sound Surveillance System arrays, at ranges up to 5 Mm from the Pioneer Seamount source. Stable identifiable ray arrivals are observed in several cases, but some receiving arrays are not well suited to detecting the direct ray arrivals. At 5-Mm range, travel-time variations at tidal frequencies (about 50 ms peak to peak) agree well with predicted values, providing verification of the acoustic measurements as well as the tidal model. On the longest and northernmost acoustic paths, the time series of resolved ray travel times show an annual cycle peak-to-peak variation of about 1 s and other fluctuations caused by natural oceanic variability. An annual cycle is not evident in travel times from shorter acoustic paths in the eastern Pacific, though only one realization of the annual cycle is available. The low-pass-filtered travel times are estimated to an accuracy of about 10 ms. This travel-time uncertainty corresponds to errors in range- and depth-averaged temperature of only a few millidegrees, while the annual peak-to-peak variation in temperature averaged horizontally over the acoustic path and vertically over the upper 1 km of ocean is up to 0.5°C  相似文献   

2.
This paper reports the inversion of midfrequency (1500–4500 Hz) chirps from a short-range transmission experiment conducted on the New Jersey Continental Shelf during the 2006 Shallow Water Experiment (SW06). The source was held at different depths and the sound signals were recorded at a vertical line array to investigate the interactions with the sea bottom at various grazing angles. Strong reflections from the sediment layer were seen in the data for all of the sources. Due to the presence of complex microstructures in the thermocline of the oceanic sound-speed profile, fluctuations both in amplitude and arrival time of the direct path arrivals were observed. Time variation of the water-column environment was also evident during the source transmissions. To mitigate the effects of the ocean environment on the seabed property estimation, a multistage optimization inversion was employed. The sound speed and the experimental geometry were inverted first using only the travel times of the water-column arrivals. The bottom sound speed and the sediment layer thickness were then inverted by matching the travel times of the bottom and sub-bottom reflections. The average of the estimated values for the sediment sound speed is 1598 m/s, consistent with in situ measurements from other experiments in the vicinity.   相似文献   

3.
A basin-scale acoustic tomography simulation is carried out for the northeast Pacific Ocean to determine the accuracy with which time must be kept at the sources when clocks at the receivers are accurate. A sequential Kalman filter is used to estimate sound-speed fluctuations and clock errors. Sound-speed fluctuations in the simulated ocean are estimated from an eddy-resolving hydrodynamic model of the Pacific forced by realistic wind fields at daily resolution from 1981-1993. The model output resembles features associated with El Nino and the Southern Oscillation, as well as many other features of the ocean's circulation. Using a Rossby-wave resolving acoustic array of four fixed sources and twenty drifting receivers, the authors find that the percentage of the modeled ocean's sound-speed variance accounted for with tomography is 92% at 400-km resolution, regardless of the accuracy of the clocks. Clocks which drift up to hundreds of seconds of error or more for a year do not degrade tomographic images of the model ocean. Tomographic reconstructions of the sound-speed field are insensitive to clock error primarily because of the wide variety of distances between the receivers from each source. Every receiver “sees” the same clock error from each source, regardless of section length, but the sound-speed fluctuations in the modeled ocean cannot yield travel times which lead to systematic changes in travel time that are independent of section length. The Kalman filter is thus able to map the sound-speed field accurately in the presence of large errors at the source's clocks  相似文献   

4.
A high-resolution underwater acoustic pulse-Doppler navigation system has been developed and tested at sea. The system provides continuous, highly accurate tracking of underwater and ocean-surface platforms in a fixed 50-km2navigation net. Three reference buoys, moored 20 m from the ocean bottom, provide the navigation net used by shipboard processing equipment. Each reference buoy contains an acoustic transponder, used to obtain the acoustic travel times from the transponder to the platform, and a continuous-tone beacon, used to obtain the Doppler shift due to platform motion. The system is capable of determining the position of a platform with respect to the reference net with an error of 2-3 m. The relative position of the platform on a fix-to-fix basis can be determined within several centimeters over short time intervals (approx 10min).  相似文献   

5.
The focus of this study is the validation of significant wave height (SWH) and sea surface height anomaly (SSHA) obtained from the first Ka-band altimeter AltiKa onboard SARAL (Satellite for ARGOS and Altimeters). It is a collaborative mission of the Indian Space Research Organization and Centre National d'Etudes Spatiales (CNES). This is done using in-situ observations from buoy and Jason-2 measurements. Validation using buoy observations are at particular locations while that using Jason-2 altimeter is an attempt towards global validation of Altika products. The results clearly indicate that the SARAL/AltiKa provide high-quality data and the errors are within a predefined range of accuracy. A parallel validation of SWH from other altimeters, which monitored ocean since last decade, like EnviSAT and Jason-2 was also performed with buoy observations. The results clearly show that the accuracy of AltiKa SWH is much better than EnviSAT and comparable to reference mission Jason-2. The accuracy is quite good for the calm sea while in the rough seas the accuracy degrades some. The inter-comparison of SARAL/AltiKa SSHA with Jason-2 indicates a fair match between them. These validation exercises demonstrate the high quality of AltiKa products, usable for practical applications.  相似文献   

6.
针对深远海条件下海面声源目标定位精度与海底潜标布阵方式相关性问题,建立了基于到达时间差(TDOA)体制的被动定位模型,根据设计工况讨论了海底潜标布阵原则,利用蒙特卡洛数值模拟方法分析了声源位于阵内、阵外以及阵元失效3种情况下定位精度分布情况。仿真结果表明:当4个潜标呈矩形分布时,仅东、西两侧较小区域未覆盖,覆盖范围内平均定位精度约为34.1 m。随着阵元数增加,在中心区域附近定位精度显著提高,阵型外侧定位精度由内向外逐渐下降。当目标位于对角线方向靠近顶角附近时,模型交汇解算性能较差,定位精度大于500 m。当1#潜标失效时,测量海域西北角方向定位精度较差,但精度优于25 m的区域要比5#潜标失效情况大。7#潜标失效时,定位精度与各阵元均正常的情况接近。研究结果为海面声源测量系统设计、阵型选择、精度评估等海洋工程应用提供理论依据。  相似文献   

7.
Details are presented of a methodology that utilizes acoustic travel time information in an ocean circulation model. Recent developments of this model-oriented tomography are discussed, representing some significant improvements over earlier formulations. More accurate means of determining the arrival times of specific ray paths are detailed, along with a means of estimating possible errors in the calculated travel times. The assimilation of the observed arrival time information into an ocean model is achieved using a Kalman gain, and more advanced expressions for calculating the Kalman gain are presented. A formulation to account for errors in the stated positions of a source and receiver is also presented. It is shown that the methodology performs fairly well in reproducing observed travel time anomalies. However, the model-predicted anomalies along a specific ray path may not always track the observed anomalies for that path when assimilating multiple ray path data. Results indicate that additional work is required to determine a means of handling observed arrival time data without having prior knowledge of the magnitude of errors in the observations. Results from simulation experiments provide estimates of: (1) potential errors when the travel times for ray paths are only sampled at discreet intervals as opposed to continuously and (2) to what degree acoustic data can be expected to “correct” model-predicted fields.  相似文献   

8.
In this paper, we present a nonconventional matched-mode procedure for localizing a broadband source in the time-frequency domain. This hybrid coherent and incoherent approach exploits both the temporal and spatial characteristics of the multimode arrival structure at a receiving sensor array. In the previous work, a time-domain technique was developed to deal with narrowband signals coherently. It consists of the following three steps. The first step employs a receiving sensor array to separate the modes by the conventional modal filtering approach. The second step is to estimate the energy and relative arrival times of the various modes which arrive at the receiver. The last step uses the differences of modal travel times to estimate the source range, and uses the ratios of modal energies to estimate the source depth. Here, we employ bandpass filters to divide the received broadband signal into several subfrequency bands, and apply the first and second steps of the previously developed coherent narrowband technique to the subfrequency bands in the time domain. The results obtained from subfrequency bands are then combined incoherently in the frequency domain to produce an estimate of the source position. Numerical simulation of an experiment with explosive sources at the shallow water site of the Yellow Sea is presented  相似文献   

9.
An acoustic tomography simulation is carried out in the eastern North Pacific ocean to assess whether climate trends are better detected and mapped with mobile or fixed receivers. In both cases, acoustic signals from two stationary sources are transmitted to ten receivers. Natural variability of the sound-speed field is simulated with the Naval Research Laboratory (NRL) layered-ocean model. A sequential Kalman-Bucy filter is used to estimate the sound speed field, where the a priori error covariance matrix of the parameters is estimated from the NRL model. A spatially homogeneous climate trend is added to the NRL fluctuations of sound speed, but the trend is not parameterized in the Kalman filter. Acoustic travel times are computed between the sources and receivers by combining sound speeds from the NRL model with those from the unparameterized climate trend. The effects of the unparameterized climate trend are projected onto parameters which eventually drift beyond acceptable limits. At that time, the unparameterized trend is detected. Mobile and fixed receivers detect the trend at about the same time. At detection time, however, maps from fixed receivers are less accurate because some of the unparameterized climate trend is projected onto tile spatially varying harmonics of the sound-speed field. With mobile receivers, the synthetic apertures suppress the projection onto these harmonics. Instead, the unparametrized trend is correctly projected onto the spatially homogeneous portion of the parameterized sound-speed field  相似文献   

10.
Owing to the spatial averaging involved in satellite sensing, use of observations so collected is often restricted to offshore regions. This paper discusses a technique to obtain significant wave heights at a specified coastal site from their values gathered by a satellite at deeper offshore locations. The technique is based on the approach of Artificial Neural Network (ANN) of Radial Basis Function (RBF) and Feed-forward Back-propagation (FFBP) type. The satellite-sensed data of significant wave height; average wave period and the wind speed were given as input to the network in order to obtain significant wave heights at a coastal site situated along the west coast of India. Qualitative as well as quantitative comparison of the network output with target observations showed usefulness of the selected networks in such an application vis-à-vis simpler techniques like statistical regression. The basic FFBP network predicted the higher waves more correctly although such a network was less attractive from the point of overall accuracy. Unlike satellite observations collection of buoy data is costly and hence, it is generally resorted to fewer locations and for a smaller period of time. As shown in this study the network can be trained with samples of buoy data and can be further used for routine wave forecasting at coastal locations based on more permanent flow of satellite observations.  相似文献   

11.
Estimates of the travel times between the elements of a bottom hydrophone array can be extracted from the time-averaged ambient noise cross-correlation function (NCF). This is confirmed using 11-min-long data blocks of ambient noise recordings that were collected in May 1995 near the southern California coast at an average depth of 21 m in the 150-700 Hz frequency range. Coherent horizontal wavefronts emerging from the time derivative of the NCF are obtained across the array's aperture and are related to the direct arrival time of the time-domain Green's function (TDGF). These coherent wavefronts are used for array element self-localization (AESL) and array element self-synchronization (AESS). The estimated array element locations are used to beamform on a towed source.  相似文献   

12.
In the analysis of crosshole tomography data, the first step is to estimate the arrival time and amplitude of the multi-path arrivals which comprise the received signal. Normally algorithms such as matched filter are used to determine the arrival times. However, when the bandwidth of the signal is small, this method cannot resolve closely spaced arrivals. We, therefore, investigate the performance of a simulated annealing algorithm in estimating the amplitude scaling factors and delay times of the separate arrivals in a signal composed of closely spaced arrivals with added noise. The algorithm is applied to field data collected during a crosshole tomography experiment conducted in sea ice  相似文献   

13.
For microearthquake surveys conducted with small networks in regions where the seismic velocity structure has large vertical gradients, the formal errors accompanying hypocentral solutions obtained by a generalized inverse method may be misleading since they do not incorporate the effects of nonlinearity in travel times. An alternative method for estimating uncertainties involves calculating travel time residuals over a regular grid and using the F statistic to contour confidence volumes. We present a statistical expression for the latter confidence limits that is applicable when an independent estimate of arrival time errors is available from observations accumulated for a number of earthquakes. Synthetic experiments comparing the results of the grid search and generalized inverse methods show that in cases where solutions are obtained either without S wave information or for epicenters which lie well outside the network, the effects of nonlinearity on the shape of the confidence regions may be significant. However, for the well-observed events both methods yield comparable confidence volumes in good agreement with the distribution of hypocenters obtained from repeated locations incorporating random errors. The generalized inverse method has the advantage that it requires fewer calculations, so the examination of systematic errors in hypocentral parameters produced by uncertainties in the seismic velocity structure can be studied in a more computationally efficient manner. Except in the cases of poorly resolved earthquakes, the effects of nonlinearity on uncertainties in hypocentral parameters can be observed by the application of the F statistic to the variation of the generalized inverse travel time residuals with focal depth.  相似文献   

14.
The Naval Research Laboratory created a wave forecasting system in support of the Nearshore Canyon Experiment (NCEX) field program. The outer nest of this prediction system encompassed the Southern California Bight. This forecasting system is described in this paper, with analysis of results via comparison to the extensive buoy network in the region. There are a number of potential errors, two of which are poor resolution of islands in the Bight—which have a strong impact on nearshore wave climate—and the use of the stationary assumption for computations. These two problems have straightforward solutions, but the solutions are computationally expensive, so an operational user must carefully consider their cost. The authors study the impact of these two types of error (relative to other errors, such as error in boundary forcing) using several hindcasts performed after the completion of NCEX. It is found that, with buoy observations as ground truth, the stationary assumption leads to a modest increase in root-mean-square error; this is due to relatively poor prediction of the timing of swell arrivals and local sea growth/decay. The model results are found to be sensitive to the resolution of islands; however, coarse resolution does not incur an appreciable penalty in terms of error statistics computed via comparison to buoy observations, suggesting that other errors dominate. Inaccuracy in representation of the local atmospheric forcing likely has a significant impact on wave model error. Perhaps most importantly, the accuracy of directional distribution of wave energy at the open ocean boundaries appears to be a critical limitation on the accuracy of the model-data comparisons inside the Bight.  相似文献   

15.
On May 22 and 24, 1995, a buoy, designed to float with the water surface and equipped with a GPS antenna, was deployed off the California coast at 16 locations near the Texaco oil platform, Harvest. The purpose of this deployment was threefold:.(1) to demonstrate the ability of this style of buoy to calibrate the TOPEXIPOSEIDON (TIP) altimeter range measurement as it overflew the platform: (2) to demonstrate the ability of the buoy to map the ocean's surface over a 10‐km‐diameter circle surrounding platform Harvest; and (3) to demonstrate the ability of the buoy to measure the sea state accurately. During the 1.6‐h period surrounding the time of the TIP overflight, the buoy‐measured sea level never differed by more than 1.5 cm from the sea level measured by the National Oceanic and Atmospheric Administration (NOAA) acoustic tide gauge on the platform. The good agreement demonstrated the capability of this style of buoy to calibrate altimetric satellites. A paraboloid was fitted to sea level from 16 buoy locations surrounding the platform with a 2.5‐cm rms residual. On a 10‐km‐diameter circle centered on the platform, the paraboloid was within 2.4‐cm rms of the Ohio State University Mean Sea Surface (OSUMSS95). H u3 values calculated around the overflight times from the GPS buoy vertical positions had a mean difference of 2 cm and a standard deviation of 18 cm from values calculated from the University of Colorado (CU) pressure gauge system. At the time of the overflight, H u3 was near 2 m, while 3‐m seas were observed by the CU pressure system during measurements later in the day. This experiment demonstrates that a simple wave‐rider buoy design can give comparable accuracies to that of more complex GPS platforms such as the University of Colorado's spar buoy, but is much easier to deploy and capable of being used in more severe weather conditions. Thus, such a buoy and derivative designs have great potential for calibrating altimetric experiments, and for oceanographic and geodetic mapping experiments.  相似文献   

16.
This paper describes a regularized acoustic inversion algorithm for tracking individual elements of a freely drifting sonobuoy field using measured acoustic arrival times from a series of impulsive sources. The acoustic experiment involved 11 sonobuoys distributed over an 8/spl times/6-km field, with a total of six sources deployed over 72 min. The inversion solves for an independent track for each sonobuoy (parameterized by the sonobuoy positions at the time of each source transmission), as well as for the source positions and transmission instants. Although this is a strongly under-determined problem, meaningful solutions are obtained by incorporating a priori information consisting of prior estimates (with uncertainties) for the source positions and initial sonobuoy positions and a physical model for sonobuoy motion along preferentially smooth tracks. The inversion results indicate that the sonobuoys move approximately 260-700 m during the source-deployment period. Closely spaced sonobuoys move along similar tracks; however, there is considerable variability in track directions over the entire field. Positioning uncertainties in horizontal coordinates are estimated using a Monte Carlo appraisal procedure to be approximately 100 m in an absolute sense and 65 m in a relative sense. A sensitivity study indicates that the uncertainties of the a priori position estimates are the limiting factor for track accuracy, rather than data uncertainties or source configuration.  相似文献   

17.
A trial experiment proves the power and practicality of using both sources and receivers near the ocean floor to make precise measurements of deep (∼6000 m) ocean sediment velocity structure. A digitally recording ocean bottom hydrophone receiver operating at a sampling rate of 1800 Hz recorded clear arrivals with bubble pulse frequencies of ∼500 Hz from 41b. explosive charges detonated at depths of 5500m along a 4 km long wide angle reflection profile. It is shown that corrections for changes in source depth may be computed without approximation and without prior knowledge of the velocity structure. The experiment was located at longitude 56° W in the trough of the Kane Fracture Zone. The velocity structure of the 1 km thick sedimentary section reveals a 310 m thickness of 3 km s−1 material overlying igneous basement.  相似文献   

18.
This paper reviews a simple technique for interpreting the velocity structure of upper oceanic crust from travel-time data of sonobuoy and ocean bottom receiver refraction experiments. The technique does not involve sophisticated digital processing or synthetic seismogram analysis. Interpretations can be carried out with a pencil, paper and slide rule.Travel-time inversion procedures based on the -p transformation require the assumption of the shallowmost velocity. In some cases, however, such as oceanic crustal studies, the shallowmost velocity is one tf the critical parameters for which one wishes to invert. An inversion method for the shallowmost velocity is discussed which assumes a constant velocity gradient. The time, range and ray parameter of a point on the travel-time curve are sufficient to obtain the velocity at the top of the gradient zone and the gradient. The method can be used to interpolate the velocity-depth function into regions from which no seismic energy is returned as a first arrival. Once an estimate of the upper crustal velocity is obtained the traditional -p procedures can be applied.The model considered consists of a homogeneous layer over a layer in which velocity increases linearly with depth. For such a geometry there are three classes of behaviour of the travel-time curve based on the number of cusps: zero, one or two. The number of cusps depends on the uppermost velocity in the crust, the velocity gradient of the upper crust and the depth of the sources and receivers. It has not been previously recognized that two cusps in the travel time curve may be observed for this simple model. Since estimating the ray parameter from first arrival times is less ambiguous when there are no cusps, understanding the relations involved with the three classes aids in the design of experiments. It is reasonable to apply the model to shallow sea floor structure because of the high quality of marine refraction data which has recently been obtained.  相似文献   

19.
重物在落水和着底过程中都会产生瞬态声信号,这类信号可被运用于浅水区域水下目标定位。 针对浅水区域目标定位的问题,提出了一种基于小型立体五元基阵的瞬态声源快速被动定位算法。 在分析重物落水信号特征的基础上,选取合适的广义互相关加权函数求得传声器之间的声程差,运用快速最小二乘搜索算法进行声源定位。 结果表明:运用 5 传声器阵列可以同时兼顾定位精度和鲁棒性,且满足实时性要求,该方法可运用于浅水区域瞬态声源定位等领域。  相似文献   

20.
两种基于贝叶斯点估计理论的多声源定位方法研究   总被引:1,自引:1,他引:0  
海洋环境参数失配是制约匹配场定位性能的主要因素之一。为了克服环境失配,本文基于贝叶斯理论,将环境参数与声源的距离和深度一起作为未知量进行反演。然而在进行多声源定位时,反演参数的维数几何增长,极大地增加了反演问题的复杂性和计算量。为此本文将声源强度和噪声方差表示成其极大似然估计值,从而将这些参数进行隐式采样,大大降低了反演的维数和难度。文章比较了两种贝叶斯点估计方法,最大后验概率密度方法和最大边缘后验概率密度方法。最大后验概率密度方法的解是令后验概率密度取得最大值的参数组合,可以利用优化算法快速获得。最大边缘后验概率密度法将其他参数积分,得到目标参数的一维边缘概率分布,分布的最大值为反演结果。该方法得到最优估计值的同时可以获取参数估计的不确定信息。在环境参数和声源参数都未知的情况下,利用蒙特卡洛法在不同信噪比情况下对两种声源定位方法进行分析,实验结果表明:(1)对于敏感参数,如声源距离、水深和海水声速,最大边缘后验概率密度法比最大边缘后验概率密度方法的性能好。(2)对于较不敏感的参数,如海底声速、海底密度和海底声衰减,当信噪比较低时,最大边缘后验概率密度方法能较好地平滑噪声,从而比最大边缘后验概率密度法具有更好的性能。由于声源距离和深度是敏感参数,研究表明最大边缘后验概率密度法提供了一种在不确知环境下更可靠的多声源定位方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号