首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Thirty-one plugs of alkaline volcanic rocks of Cenozoic age (37 Ma in mean) occur in the Upper Benue valley, northern Cameroon (Central Africa). The complete alkaline series (alkaline basalts, hawaiites, mugearites, phonolites, trachytes and rhyolites) is represented. Basalts contain phenocrysts of olivine, Al-Ti-rich diopside, and Ti-magnetite, and hawaiites-abundant microphenocrysts of plagioclase. Mugearites have a trachytic texture and contain xenocrysts of K-feldspar, apatite, quartz and unstable biotite. Phonolites are peralkaline. Trachytes (peralkaline and non-peralkaline) and rhyolites are characterised by their sodic mineralogy with aegirine-augite, richterite, and arfvedsonite phenocrysts. There is a large compositional gap between basaltic and felsic lavas, except the mugearites. Despite this gap, major- and trace-element distributions are in favour of a co-magmatic origin for the basaltic and felsic lavas. The Upper Benue valley basalts are similar in their chemical and isotopic features to other basalts from both the continental and oceanic sectors of the Cameroon Line. The Upper Benue valley basaltic magmas (87Sr/86SrƸ.7035; k Nd=+3.9) originate from an infra-lithospheric reservoir. The Sr-Nd isotopic composition and high Sr contents of the mugearites suggest that they are related to mantle-derived magmas and that they result from the mixing, at shallow crustal levels, of a large fraction of trachytic magma with a minor amount of basaltic magma. Major-element modelling of the basalt-trachyte evolution (through hawaiite and mugearite compositions) does not support an evolution through fractional crystallization alone. The fluids have played a significant role in the felsic lavas genesis, as attested by the occurrence of F-rich minerals, calcite and analcite. An origin of the Upper Benue valley rhyolitic magmas by fractional crystallization of mantle-derived primitive magmas of basaltic composition, promoted or accompanied by volatile, halogen-rich fluid phases, may be the best hypothesis for the genesis of these lavas. These fluids also interact with the continental crust, resulting in the high Sr-isotope initial ratios (0.710) in the rhyolites, whereas the Nd isotopic composition has been less affected (k Nd=+0.4).  相似文献   

2.
The Alligator Lake complex is a Quaternary alkaline volcanic center located in the southern Yukon Territory of Canada. It comprises two cinder cones which cap a shield consisting of five distinct lava units of basaltic composition. Units 2 and 3 of this shield are primitive olivine-phyric lavas (13.5–19.5 cation % Mg) which host abundant spinel lherzolite xenoliths, megacrysts, and granitoid fragments. Although the two lava types have erupted coevally from adjacent vents and are petrographically similar, they are chemically distinct. Unit 2 lavas have considerably higher abundances of LREE, LILE, and Fe, but lower HREE, Y, Ca, Si, and Al relative to unit 3 lavas. The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of these two units are, however, indistinguishable. The differences between these two lava types cannot be explained in terms of low pressure olivine fractionation, and the low concentrations of Sr, Nb, P, and Ti in the granitoid xenoliths relative to the primitive lavas discounts differential crustal contamination. The abundance of spinel lherzolite xenoliths and the high Mg contents in the lavas of both units indicates that their compositional differences originated in the upper mantle. The Al and Si systematics of these lavas suggests that, compared to unit 3 magmas, the unit 2 magmas may have segregated at greater depths from a garnet lherzolite mantle. The identical isotopic composition and similar ratios of highly incompatible elements in these two lava units argues against their differences being a consequence of random metasomatism or mantle heterogeneity. The lower Y and HREE contents but higher concentrations of incompatible elements in the unit 2 lavas relative to unit 3 can be most simply explained by differential partial melting of similar garnet-bearing sources. The unit 2 magmas thus appear to have been generated by smaller degrees of melting at a greater depth than the unit 3 magmas. The contemporaneous eruption of two distinct but volumetrically restricted primary magmas from adjacent vents at the Alligator Lake volcanic complex suggests that volcanism in this region of the Canadian Cordillera is controlled by localized, small batch processes.  相似文献   

3.
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.  相似文献   

4.
In situ Sr-isotope and microchemical studies were used to determine the provenance of K-feldspar megacrysts hosted in mafic alkaline potassic, ultrapotassic rocks and in differentiated rocks from two nearby volcanic apparatus in central Italy.

At Monte Cimino volcanic complex, mafic leucite-free ultrapotassic megacryst-bearing rocks of olivine latitic composition are associated with evolved latite and trachyte. Here, latites and trachytes straddle the sub-alkaline field. Age-corrected 87Sr/86Sr values (Sri) of the analysed Cimino olivine latites vary from 0.71330 and 0.71578 and strongly increase at constant Mg value. Latite and trachyte have lower Sri than olivine latites ranging between 0.71331 and 0.71361. Sri of K-feldspar megacrysts from olivine latites are between 0.71352 and 0.71397, but core and rim 87Sr/86Sr ratios within individual megacryst are indistinguishable. In all the mafic rocks, the megacrysts are not in isotopic equilibrium with the hosts. K-feldspar megacrysts from both the latite and trachyte have similar Sr-isotope compositions (Sri=0.71357–0.71401) to those in the olivine latites. However, Sri of megacryst in the trachyte vary significantly from core to rim (Sri from 0.71401 to 0.71383). As with the olivine latites, the K-feldspar megacrysts are not in isotopic equilibrium with bulk rock compositions of the latite or trachyte.

At Vico volcano, megacryst-bearing rocks are mafic leucite-free potassic rocks, mafic leucite-bearing ultrapotassic rocks and old trachytic rocks. The mafic leucite-bearing and leucite-free rocks are a tephri-phonolite and an olivine latite, respectively. A megacryst in Vico trachyte is isotopically homogeneous (Sri CORE=0.71129, RIM=0.71128) and in equilibrium with the host rock (Sri bulk ROCK=0.71125). Sri of megacryst from tephri-phonolite is clearly not in isotopic equilibrium with its host (Sri bulk ROCK=0.71158), and it increases from core (Sri=0.71063) to rim (Sri=0.71077). A megacryst in Vico olivine latite is isotopically homogeneous (Sri CORE=0.71066, RIM=0.71065), but not in equilibrium with the host rock (Sri bulk ROCK=0.71013).

The Sr isotope microdrilling technique reveals that Cimino megacrysts were crystallised in a Cimino trachytic magma and were subsequently incorporated by mixing/mingling processes in the latitic and olivine latitic melts. A model invoking the presence of a mafic sub-alkaline magma, which was mixed with the olivine latite, is proposed to justify the lack of simple geochemical mixing relation between Cimino trachytes and olivine latites. This magmatological model is able to explain the geochemical characteristics of Cimino olivine latites, otherwise ascribed to mantle heterogeneity.

The similarity of core Sri of megacrysts hosted in Vico tephri-phonolite and olivine latite suggests that the K-feldspar megacrysts are co-genetic. Isotopic equilibrium between megacryst and Vico host trachyte indicates that the trachyte is the parent of this megacryst. On the contrary, the megacrysts hosted in tephri-phonolite and olivine latite do not derive from the old trachytic magma because no diffusion process may explain the core to rim Sr isotope increase of the xenocryst hosted in the tephri-phonolite. The megacrysts hosted in the Vico mafic rocks might derive from a trachytic melt similar in composition to the old Vico trachytes.  相似文献   


5.
Recent basaltic-andesite lavas from Merapi volcano contain abundant and varied igneous inclusions suggesting a complex sub-volcanic magmatic system for Merapi volcano. In order to better understand the processes occurring beneath Merapi, we have studied this suite of inclusions by petrography, geochemistry and geobarometric calculations. The inclusions may be classified into four main suites: (1) highly crystalline basaltic-andesite inclusions, (2) co-magmatic enclaves, (3) plutonic crystalline inclusions and (4) amphibole megacrysts. Highly crystalline basaltic-andesite inclusions and co-magmatic enclaves typically display liquid–liquid relationships with their host rocks, indicating mixing and mingling of distinct magmas. Co-magmatic enclaves are basaltic in composition and occasionally display chilled margins, whereas highly crystalline basaltic-andesite inclusions usually lack chilling. Plutonic inclusions have variable grain sizes and occasionally possess crystal layering with a spectrum of compositions spanning from gabbro to diorite. Plagioclase, pyroxene and amphibole are the dominant phases present in both the inclusions and the host lavas. Mineral compositions of the inclusions largely overlap with compositions of minerals in recent and historic basaltic-andesites and the enclaves they contain, indicating a cognate or ‘antelithic’ nature for most of the plutonic inclusions. Many of the plutonic inclusions plot together with the host basaltic-andesites along fractional crystallisation trends from parental basalt to andesite compositions. Results for mineral geobarometry on the inclusions suggest a crystallisation history for the plutonic inclusions and the recent and historic Merapi magmas that spans the full depth of the crust, indicating a multi-chamber magma system with high amounts of semi-molten crystalline mush. There, crystallisation, crystal accumulation, magma mixing and mafic recharge take place. Comparison of the barometric results with whole rock Sr, Nd, and Pb isotope data for the inclusions suggests input of crustal material as magma ascends from depth, with a significant late addition of sedimentary material from the uppermost crust. The type of multi-chamber plumbing system envisaged contains large portions of crystal mush and provides ample opportunity to recycle the magmatic crystalline roots as well as interact with the surrounding host lithologies.  相似文献   

6.
Clinopyroxene megacrysts from young melanephelinitic lavas were divided into Cr-rich and Cr-poor suites. Sr, Nd, and Pb isotopic ratios of leached megacrysts and host lava are indistinguishable from each other and indicate a depleted source. Host lavas do not display chemical evidence for significant fractional crystallization, which is required to explain the compositional range of the megacrysts. This rules out a simple cognate genetic relationship between the two, and strictly defines megacrysts as xenocrysts. The well-defined correlations of trace elements with the Mg-numbers in the megacrysts are interpreted as the result of extensive fractional/equilibrium crystallization of magma over a large temperature range at near isobaric condition in the upper mantle. Trace element variations in megacrysts are consistent with fractional crystallization of clinopyroxene alone for the Cr-rich suite, and clinopyroxene + garnet for the Cr-poor suite from at least two bathes of related melts. Megacrysts parent magma might represent mantle melts, which were never erupted in their initial composition.  相似文献   

7.
Summary ?Many granitoid intrusions display textural evidence for the interaction of mafic and silicic magmas during their genesis. The ∼ 400 Ma Galway Granite exhibits excellent evidence for magma mixing and mingling both at outcrop/map scale (magma mingling and mixing zones), and at thin-section/crystal scale (mixing textures). These textures – quartz ocelli, rapakivi feldspars, acicular and mixed apatite morphologies, inclusion zones in feldspars, anorthite ‘spikes’ in plagioclase, sphene ocelli, K-feldspar megacrysts in mafic microgranular enclaves (MME), and mafic clots – constitute a textural assemblage whose origin can be explained in terms of magma mixing and mingling models. Furthermore, textures from this assemblage have been recorded throughout the Galway batholith indicating that magma mingling and mixing played a key role during its evolution. Received November 18, 2000; revised version accepted November 6, 2001  相似文献   

8.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

9.
The Sete Cidades volcano (São Miguel, Azores) is situatedat the eastern end of the ultraslow spreading Terceira riftaxis. The volcano comprises several dominantly basaltic pre-calderaeruptions, a trachytic caldera-forming stage and a post-calderastage consisting of alternating trachytic and basaltic eruptions.The post-caldera flank lavas are more primitive (>5 wt %MgO) than the pre-caldera lavas, implying extended fractionalcrystallization and longer crustal residence times for the pre-caldera,shield-building lavas. Thermobarometric estimates show thatthe ascending alkali basaltic magmas stagnated and crystallizedat the crust–mantle boundary (15 km depth), whereas themore evolved magmas mainly fractionated in the upper crust (3km depth). The caldera-forming eruption was triggered by a basalticinjection into a shallow trachytic magma chamber. Lavas fromall stages follow a single, continuous liquid line of descentfrom alkali basalt to trachyte, although slight differencesin incompatible element (e.g. Ba/Nb, La/Nb) and Sr isotope ratiosimply some heterogeneity of the mantle source. Major and traceelement data suggest similar partial melting processes throughoutthe evolution of the volcano. Slight geochemical differencesbetween post- and pre-caldera stage lavas from the Sete Cidadesvolcanic system indicate a variation in the mantle source compositionwith time. The oxygen fugacity increased from the pre-calderato the post-caldera stage lavas, probably as a result of theassimilation of crustal rocks; this is supported by the presenceof crustal xenoliths in the lavas of the flank vents. The lavasfrom the Sete Cidades volcano generally have low Sr isotoperatios; however, rocks from one post-caldera vent on the westernflank indicate mixing with magmas resembling the lavas fromthe neighbouring Agua de Pau volcano, having higher Sr isotoperatios. The different magma sources at Sete Cidades and theadjacent Agua de Pau volcano imply that, despite their closeproximity, there is only limited interaction between them. KEY WORDS: crystallization depth; fractionation; stratigraphy; Terceira rift; volcanic stages  相似文献   

10.
Miocene aged calc-alkaline mafic host stocks (monzogabbro) and felsic microgranular enclaves (monzosyenite) around the Bafra (Samsun) area within Tertiary volcanic and sedimentary units of the Eastern Pontides, Northeast Turkey are described for the first time in this paper. The felsic enclaves are medium to fine grained, and occur in various shapes such as, elongated, spherical to ellipsoidal, flame and/or rounded. Most enclaves show sharp and gradational contacts with the host monzogabbro, and also show distinct chilled margins in the small enclaves, indicating rapid cooling. In the host rocks, disequilibrium textures indicating mingling or mixing of coeval mafic and felsic magmas are common, such as, poikilitic and antirapakivi textures in feldspar phenocrysts, sieve textured-patchy-rounded and corroded plagioclases, clinopyroxene megacrysts mantled by bladed biotites, clinopyroxene rimmed by green hornblendes, dissolution in clinopyroxene, bladed biotite, and acicular apatite. The petrographical and geochemical contrasts between the felsic enclaves and host monzogabbros may partly be due to a consequence of extended interaction between coeval felsic and mafic magmas by mixing/mingling and diffusion. Whole-rock and Sr-Nd isotopic data suggests that the mafic host rocks and felsic enclaves are products of modified mantle-derived magmas. Moreover, the felsic magma was at near liquidus conditions when injected into the mafic host magma, and that the mafic intrusion reflects a hybrid product formed due to the mingling and partial (incomplete) mixing of these two magmas.  相似文献   

11.
本文对华北克拉通晚中生代和新生代碱性玄武质岩石中的单斜辉石巨晶进行了主、微量元素和Sr-Nd同位素的综合研究,发现晚中生代和新生代单斜辉石巨晶存在明显的主、微量元素和同位素组成上的差异。新生代单斜辉石巨晶有Al-普通辉石和次透辉石两类;而中生代单斜辉石巨晶只有Al-普通辉石。新生代单斜辉石SiO_2含量高、REE配分型式为上凸型、LILE和放射性元素含量高,并具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成;而中生代单斜辉石SiO_2含量低、REE配分型式为LREE富集型、LILE和部分HFSE以及放射性元素含量低,并具有比寄主碱性玄武岩稍富集的Sr和Nd同位素组成;巨晶的结构、矿物成分和地球化学特征,以及Mg-Fe在熔体与单斜辉石间的分配状况皆说明,新生代碱性玄武岩中单斜辉石巨晶是碱性玄武岩浆在高压下结晶的,因此二者是同源的;而中生代单斜辉石巨晶是被寄主岩浆偶然捕获的捕虏晶,是不同源的。华北新生代单斜辉石巨晶存在于碱性玄武岩和拉斑玄武岩中,它们具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成,说明即使是碱性玄武岩也不能完全代表软流圈来源的原始岩浆,其在上升过程中或多或少存在同位素组成富集的物质的混入。同时,拉斑玄武岩不是碱性玄武质岩浆直接结晶分异的产物,亦不是完全由部分熔融程度的不同造成的。拉斑玄武岩中存在岩石圈地幔物质的贡献或是岩浆房内碱性玄武质岩浆受地壳混染作用的结果。  相似文献   

12.
Calc-alkaline, metaluminous granitoids in the north of Jonnagiri schist belt (JSB) are associated with abundant mafic rocks as enclave. The enclaves represent xenoliths of the basement, mafic magmatic enclaves (MME) and synplutonic mafic dykes. The MME are mostly ellipsoidal and cuspate shape having lobate margin and diffuse contact with the host granitoids. Sharp and crenulated contacts between isolated MME and host granitoids are infrequent. The MME are fine-grained, slightly dark and enriched in mafic minerals compare to the host granitoids. MME exhibits evidences of physical interaction (mingling) at outcrop scale and restricted hybridization at crystal scale of mafic and felsic magmas. The textures like quartz ocelli, sphene (titanite) ocelli, acicular apatite inclusion zone in feldspars and K-feldspar megacrysts in MME, megacrysts across the contact of MME and host and mafic clots constitute textural assemblages suggestive of magma mingling and mixing recorded in the granitoids of the study area. The quartz ocelli are most likely xenocrysts introduced from the felsic magma. Fast cooling of mafic magma resulted in the growth of prismatic apatite and heterogeneous nucleation of titanite over hornblende in MME. Chemical transfer from felsic magma to MME forming magma envisage enrichment of silica, alkalis and P in MME. The MME show low positive Eu anomalies whereas hybrid and host granitoids display moderate negative Eu-anomalies. Synplutonic mafic dyke injected at late stage of crystallising host felsic magma, display back veining and necking along its length. The variable shape, dimensions, texture and composition of MME, probably are controlled by the evolving nature and kinematics of interacting magmas.  相似文献   

13.
最近,花岗岩混合成了花岗岩研究的热点,国内外许多学者探讨了花岗岩混合问题,并尝试用不同端元组分不同比例的混合来解释花岗岩的地球化学变化。本文从花岗岩与玄武岩的对比出发,探讨了花岗岩混合的可能性和局限性。作者认为,花岗岩混合的现象是普遍存在的,但是次要的和局部的。岩浆混合的能力或能干性(competence of mixing)主要取决于岩浆的黏性和温度,而黏性又与硅氧四面体有关。相对于玄武岩,花岗岩的SiO_2含量高,温度低,因此,花岗质岩浆的混合能干性很低。玄武质岩浆的混合是mixing(以化学混合为主),而花岗质岩浆的混合通常只是mingling(以机械混合为主),只有在少数情况下才能达到mixing的程度,例如,埃达克岩与地幔混合形成的高镁安山岩或高镁埃达克岩。许多人认为,花岗岩中的暗色微粒包体是花岗质岩浆混合作用最显著、最直接证据。研究表明,花岗岩中的暗色微粒包体大多是闪长质成分的,其初始成分大多是玄武质的。因此,暗色微粒包体不是花岗质岩浆混合作用最显著、最直接证据,而是玄武质岩浆混合能力强过花岗质岩浆的证据。与玄武质岩浆的起源比较,花岗质岩浆从一开始熔融就是不均一的,这源于源区的不均一及熔融过程的复杂性。花岗质岩浆原始均一性的假定是不可能的。花岗岩成分的变化以及在哈克图解中成分点的"连续谱系",主要是由源区不均一性引起的,混合和分异可能有一定的作用,但毕竟是次要的。花岗质岩浆从源区生成、迁移、直至在地表喷出或在浅部定位的全过程,是一个不断均一化和不均一化的过程。但是,由于花岗质岩浆的黏性大,上述过程及岩浆演化的程度和规模都受到限制,也限制了岩浆混合的程度和规模。许多人仅从花岗岩地球化学成分的变化来研究花岗岩的成因,而很少考虑花岗岩物理性质对岩浆演化的制约。对比玄武岩与花岗岩,我们认为,地球化学方法在花岗岩中应用的范围和程度可能远远不及玄武岩,我们应当重新考虑花岗岩的地球化学应用问题。  相似文献   

14.
At Telões, a subaluminous medium- to coarse-grained porphyritic biotite granite, crops out along the Vila Real NNE–SSW fault. It is a post-tectonic granite of 299±3 Ma old given by U–Pb isotopic data on zircon. It contains metaluminous to subaluminous tonalitic, granodioritic and monzogranitic enclaves. All granitoids have Fe2+-biotite and some enclaves contain magnesiohornblende and subsolidus actinolite. Monzogranitic enclaves show obvious similarities to the host granite. Linear array between enclaves and host granite is observed in Rb–Sr typical isochron diagram and gives the age of 286±11 Ma and (87Sr/86Sr)0=0.7063±0.0011. Microgranular enclaves have δ18O values similar to those of the hosting granite. Microgranular enclaves are hybrid rocks probably formed by mixing between a tonalitic enclave magma and a host granite magma as supported by the modelling of major and trace elements. The similar isotopic signatures suggest a subsequent partial equilibration of the enclaves and granite magmas.  相似文献   

15.
Tholeiitic lavas of the Servilleta Basalt exhibit only subtletextural and mineralogical evidence for a hybrid origin, butelemental and isotopic analyses of these basalts are best modeledin terms of mixing Servilleta parent magma with a range of contemporaneousandesite and dacite magmas. Cryptic compositional heterogeneitiesin some flows interpreted as hybrids apparently reflect incompletehomogenization following pre-emptive magma mingling. The generalscarcity of mixing-related textural disequilibrium is ascribedin part to mixing of mineralogically similar end-members. Eradicationof some phenocrysts during post-mixing residence and evolutionin a convecting magma body may be an even more important factor. Eruptions of hybrid magmas may frequently be triggered by magmamixing events (i.e. injection or replenishment), and minglingof compositionally diverse magmas may ensue as a consequenceof tapping a compositionally graded or layered magma chamber.These hybrids are instantly recognizable by the preservationof disequilibrium textures and mineral assemblages, and by discontinuouscompositional heterogeneities. Cryptic hybrids, which have notpreserved this record, will be recognizable as mixed magmasprimarily by geochemical evidence for open system evolution.  相似文献   

16.
New Sr and Nd isotopic data are presented for several large feldspar crystals occurring in microgranular enclaves in the Swifts Creek and Bridle Track plutons, along with analyses of their host enclave groundmass and adjacent granitoid. In the Swifts Creek Pluton several previous studies have concluded that the microgranular enclaves represent admixed, more mafic and more primitive magmas, and new data presented here confirm that. Feldspar megacrysts in the microgranular enclaves have Sr and Nd isotopic signatures that are distinct from the surrounding enclave groundmass and from other enclaves in the pluton and therefore cannot have crystallised in situ. Isotopic compositions of these feldspars are more consistent with their having crystallised in a reservoir similar in composition to the most primitive granitoid analyses. The crystals were then physically transferred from the granitoid magma into the enclave while the latter was still partially liquid, thus invalidating arguments for a porphyroblastic origin. Field, petrographic and geochemical data are consistent with microgranular enclaves in the Bridle Track pluton also originating as admixed, more mafic magmas. However, Sr isotopic compositions of the enclaves are identical, within error, to the host granite and indicate that significant Sr isotopic equilibration has occurred. Nd isotopic compositions of the enclaves extend to slightly higher 143Nd/144Nd(i) and are consistent with a mingled magma origin followed by major isotopic equilibration. Feldspar phenocrysts in the studied enclave have isotopic compositions indistinguishable from both the enclave groundmass and host granite, preventing an interpretation of their origin using isotopic evidence alone.  相似文献   

17.
The Skien lavas, which form the earliest phase of basaltic magmatism within the Permo-Carboniferous Oslo Rift, contain multiple generations of clinopyroxene which exhibit strong petrological and geochemical disequilibrium. Three principal core compositions have been identified: (1) low-jadeite, high-Mg, Cr-diopside cores (CrMgDi) with strongly depleted trace-element signatures, which are believed to be xenocrystic in origin; (2) Mg-rich, Cr-poor diopside cores (MgDi) with moderately depleted trace-element signatures which probably represent early cognate growth; and (3) more dominant, low-Mg, phenocrystic diopside cores (PhenDi). Several samples contain CrMgDi or MgDi cores which have been subjected to resorption and partial re-equilibration with their host melts, indicative of extensive disequilibrium and magma mixing. These three core types are overgrown by trace-element-enriched Ti-augite, which also forms megacrysts and late-stage lava groundmass. Calculated Ti-augite/melt partition coefficients show clinopyroxene compatibility of the M-HREE, Zr, Hf and Y. The LILE, Sr, and Nb remain incompatible. )Sr300 and )Nd300 of Ti-augite overgrowths, phenocrystic diopside, and MgDi diopside cores show that intrasample isotopic disequilibrium existed when the host basalts were erupted. All epsilon values lie within the range of data previously published for the Skien lavas. Detailed examination of the chemical, isotopic and textural disequilibrium features seen in these lavas has enabled us to place constraints upon the magmatic evolution of this basalt suite, ranging from xenocryst incorporation to cognate multistage pyroxene growth, as well as identifying clear evidence of magma mixing and possible crustal contamination.  相似文献   

18.
The processes operating in the development of chemical zonationin silicic magma chambers have been addressed with a Sr–Nd–Pb–Hf–Thisotope study of the chemically zoned trachyte pumice depositof the Fogo A eruption, Fogo volcano, Azores. Sr isotopic variationis observed in whole rocks, glass separates and sanidine phenocrysts(whole-rock 87Sr/86Sr: 0·7049–0·7061; glass87Sr/86Sr: 0·7048–0·7052; sanidine 87Sr/86Sr:0·7048–0·7062). Thorium isotopic variationis observed in glass separates, with (230Th/232Th)o rangingfrom 0·8737 to 0·8841, and exhibiting a negativecorrelation with Sr isotopes. The Nd, Pb and Hf isotopic compositionsof the whole-rock trachytic pumices are invariant and indistinguishablefrom basalts flanking the volcano. The Sr isotope variationsin the whole rocks are proposed to be the result of three distinctprocesses: contamination of the Fogo A magma by assimilationof radiogenic seawater-altered syenite wall rock, to explainthe Sr and Th isotopic compositions of the glass separates;incorporation of xenocrysts into the trachytic magma, requiredto explain the range in feldspar Sr isotopic compositions; andpost-eruptive surface alteration. This study emphasizes theimportance of determining the isotopic composition of glassand mineral separates rather than whole rocks when pre-eruptivemagmatic processes are being investigated. KEY WORDS: Azores; open-system processes; Sr isotopes; trachytic pumices; zoned magma chambers  相似文献   

19.
浙江新昌早白垩世复合岩流中的岩浆混合作用   总被引:35,自引:7,他引:35  
周金城  俞云文 《岩石学报》1994,10(3):236-247
浙江新昌拔茅地区早白垩世复合岩流中各种火山岩(Rb-Sr等时线年龄为96.3Ma)属高钾钙碱性岩系,在其中发现了中生代火山活动中岩浆混合作用的确凿证据,岩相学及地球化学研究表明,这种复合岩流中的安山质岩浆是由同时代橄榄拉斑玄武岩浆和流纹岩浆相互混合而形成的。  相似文献   

20.
The Violet Town Volcanics (Lachlan Fold Belt, Australia) arean S-type ignimbrite suite containing microgranitoid enclaves,basaltic andesite enclaves and enclaves of high-silica rhyolite.The microgranitoid enclaves are similar to those in peraluminousgranites. They typically have lower initial 87Sr/86Sr and higherNd than the host, and represent globules of a mafic, mantle-derivedmagma, which was hybridized by mixing and diffusional exchangewith the host magma. The basaltic andesite enclaves were incorporatedinto the ignimbrite as xenoliths, but their parental magma mayhave been similar to that of the microgranitoid enclaves. Theyare isotopically less depleted than other mantle-derived rocksfrom the Lachlan Fold Belt, reflecting contamination by crustalmaterial, or derivation from less depleted mantle sources. Thehigh-silica rhyolite enclaves, previously interpreted to berelated to the ignimbrite by crystal fractionation, have Ndvalues up to 3 units higher than their host, and cannot be relatedto their host by crystal fractionation or assimilation-fractionalcrystallization (AFC) processes. The coexistence of S-type magmasand mantle-derived magmas suggests that the latter may haveplayed a role in the Palaeozoic magmatism of the Lachlan FoldBelt, acting as a heat source for melting and perhaps also contributingchemical components to the crustally derived magmas. KEY WORDS: enclaves; magma mingling; magma mixing; S-type *Present address: Department of Geology and Geophysics, University of Adelaide, Adelaide, S.A. 5005, Australia. Telephone: +-61-8-3035973. Fax: +-61-8-3034347. e-mail: melburg{at}geology.adelaide.edu.au  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号