首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In a nighttime system and under relatively dry conditions (about 15 ppm H2O), the reaction mixture of NO2, O3, and NH3 in purified air turns out to result in the formation of nitrous oxide (N2O). The experiments were performed in a continuous stirred flow reactor, in the concentration region of 0.02–2 ppm.N2O is thought to arise through the heterogeneous reaction of gaseous N2O5 and absorbed NH3 at the wall of the reaction vessel % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuaacqWFOaakcqWFobGtcqWFibasdaWgaaWcbaGae83m% amdabeaakiab-LcaPmaaBaaaleaacqWFHbqyaeqaaOGaey4kaSIaai% ikaiab-5eaonaaBaaaleaacqWFYaGmaeqaaOGae83ta80aaSbaaSqa% aiab-vda1aqabaGccaGGPaWaaSbaaSqaaiaadEgaaeqaaOGaeyOKH4% Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFpbWtcqGHRaWkcqWF% ibascqWFobGtcqWFpbWtdaWgaaWcbaGae83mamdabeaakiabgUcaRi% ab-HeainaaBaaaleaacqWFYaGmaeqaaOGae83ta8eaaa!59AC!\[(NH_3 )_a + (N_2 O_5 )_g \to N_2 O + HNO_3 + H_2 O\]In principle, there is competition between this reaction and that of adsorbed H2O with N2O5, resulting in the formation of HNO3. At high water concentrations (RH>75%), no formation of N2O was found. Although the rate constant of adsorbed NH3 with gaseous N2O5 is much larger than that of the reaction of adsorbed H2O with gaseous N2O5, the significance of the observed N2O formation for the outside atmosphere is thought to be dependent on the adsorption properties of H2O and NH3 on a surface. A number of NH3 and H2O adsorption measurements on several materials are discussed.  相似文献   

2.
A multi-layer deposited ice film was prepared through water vapor deposition on a Ni plate in a vacuum chamber at 90 K, and was used as it was or after annealing at 140 K. NO2 was adsorbed as N2O4 approximately 90 K on the ice film prepared as above, and irradiated by 193 nm excimer laser light. The time-of-flight (TOF) spectra of the desorbed species, i.e., NO2, NO, O2 and O, were measured by a quadrupole mass spectrometer. The photochemical process obeyed an one-photon process. The relative yields of the products and their TOF spectra were dependent on the preparation condition of the ice film and also varied with the continuation of the laser irradiation. From the ice film annealed at 140 K, NO2, NO and O2 were desorbed with an approximate ratio of 1:1:0.01. From the non-annealed film, the relative yield of NO2 was much smaller than that of NO. The TOF spectrum of NO from the non-annealed ice film consisted of distinctly different two components corresponding to the 1700 and 100 K translational temperature, respectively. The fast component was lost when additional ice was deposited on the adsorbed N2O4. NO was supposed to be a predissociation product from the electronically excited NO2 prepared through the photodissociation of N2O4.  相似文献   

3.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

4.
We use a global atmospheric chemistry transport model to study the possible influence of aqueous phase reactions of peroxynitric acid (HNO4) on the concentrations and budgets of NOx, SOx, O3 and H2O2. Laboratory studies have shown that the aqueous reaction of HNO4aq withHSO 3aq, and the uni-molecular decomposition of the NO4 anion to form NO2 (nitrite) occur on a time scale of about a second. Despite a substantial contribution of the reaction of HSO 3aq with HNO4aq to the overall in-cloud conversion of SO2 to SO4 2–, a simultaneous decrease of other oxidants (most notably H2O2) more than compensated the increase in SO4 2– production. The strongest influence of heterogeneous HNO4 chemistry was found in the boundary layer, where calculated monthly average ozone concentrations were reduced between 2% to 10% andchanges of H2O2 between –20% to +10%compared to a simulation which ignores this reaction. Furthermore, SO2 was increased by 10% to 20% and SO4 2–depleted by up to 10%. Since the resolution of our global model does not enable a detailed comparison with measurements in polluted regions, it is not possible to verify whether considering heterogeneous HNO4 reactions results in a substantial improvement of atmospheric chemistry transport models. However, the conversion of HNO4 in the aqueous phase seems to be efficient enough to warrant further laboratory investigations and more detailed model studies on this topic.  相似文献   

5.
6.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

7.
We investigated the partitioning of trace substances during the phase transition from supercooled to mixed-phase cloud induced by artificial seeding. Simultaneous determination of the concentrations of H2O2, NH3 and black carbon (BC) in both condensed and interstitial phases with high time resolution showed that the three species undergo different behaviour in the presence of a mixture of ice crystals and supercooled droplets. Both H2O2 and NH3 are efficiently scavenged by growing ice crystals, whereas BC stayed predominantly in the interstitial phase. In addition, the scavenging of H2O2 is driven by co-condensation with water vapour onto ice crystals while NH3 uptake into the ice phase is more efficient than co-condensation alone. The high solubility of NH4+ in the ice could explain this result. Finally, it appears that the H2O2–SO2 reaction is very slow in the ice phase with respect to the liquid phase. Our results are directly applicable for clouds undergoing limited riming.  相似文献   

8.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

9.
Previous experiments in the 400–500 nm region (Coquart et al., 1995) have been extended to the 200–400 nm region to determine the absorption cross-sections of NO2 at 220 K. The NO2 and N2O4 cross-sections are obtained simultaneously from a calculation applied to the data resulting from measurements at low pressures. A comparison between the NO2 cross-sections at 220 K and at ambient temperature shows that the low temperature cross-sections are generally lower, except in the region of the absorption peaks. Comparisons are also made with previous data at temperature close to 220 K.  相似文献   

10.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关.  相似文献   

11.
The rate of formation of N2O via the thermochemically favourable reaction of NO3(A2E) with N2, which would represent an additional source of stratospheric N2O and therefore NOx, has been investigated. Mixtures of NO2+O3 in synthetic air were photolysed at 662 nm. No evidence was found for the production of N2O via this pathway, the upper limit for the quantum yield of nitrous oxide formation being % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqOXdy2aaSbaaSqaamaaBaaameaadaWgaaqaamaaBaaabaGaamOt% amaaBaaabaGaaGOmaiaad+eaaeqaaaqabaaabeaaaeqaaaWcbeaatu% uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaOGae8hzIqOa% aGimaiaac6cacaaI2aGaaiyjaaaa!4E60!\[\phi _{_{_{_{N_{2O} } } } } \le 0.6\% \]. However, a dark conversion of NOx to N2O was observed and is attributed tentatively to a heterogeneous reaction on the wall of the reaction vessel. This process, although most likely to be insignificant in the atmosphere, needs to be taken into consideration in laboratory investigations or field studies of N2O emission or deposition.  相似文献   

12.
Gas-phase H2O2, organic peroxides and carbonyl compoundswere determined at various sites from Mid-July to early August 1998 during the BERLIOZ campaign in Germany. The sites were located northwest of Berlin and were chosen to determine pollutants downwind of the city emissions during a summer smog episode. Hydrogen peroxide (H2O2),methyl hydroperoxide (MHP, CH3OOH) and occasionally hydroxymethyl hydroperoxide (HMHP, HOCH2OOH) were quantified in air samples by commercial fluorimetric methods and classical HPLC with post-column derivatisation by horseradish peroxidase/p-hydroxyphenyl acetic acid and fluorimetric detection. Carbonyl compounds were determined in ambient air by a novel method based onO-pentafluorobenzyl hydroxylamine as derivatisation agent.Mixing ratio profiles of the hydroperoxides and the carbonyl compounds are reported for the intensive phase of the campaign, 20–21 July, 1998. Peroxides showed pronounced diurnal variations with peak mixing ratios in the early afternoon. At times, a second maximum was observed in the late afternoon. The major part of the H2O2 was formed throughrecombination reactions of HO2 radicals, but there is some evidencethat H2O2 is also formed from ozonolysis ofanthropogenic and/or biogenic alkenes. Diurnal variations of mixing ratios of various carbonyl compounds are reported: alkanals (C2 to C10,isobutanal), unsaturated carbonyl compounds (methacrolein, methylvinylketone, acrolein), hydroxycarbonyl (glycolaldehyde, hydroxyacetone) and dicarbonyl compounds (glyoxal, methylglyoxal, biacetyl), aromatic compounds (benzaldehyde, o- and m-tolylaldehyde) and pinonaldehyde.  相似文献   

13.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

14.
Gas phase ozonolysis of -pinene was performedin a 570 l static reactor at 730 Torr and 296 K insynthetic air and the products were analysed by acombination of gas phase FTIR spectroscopy, HPLC andIC analyses of gas phase and aerosol samples,respectively. The reaction mechanism was investigatedby adding HCHO, HCOOH and H2O as Criegeeintermediate scavenger and cyclohexane as OH radicalscavenger. Main identified products (yields inparentheses) in the presence of cyclohexane as OHradical scavenger were HCHO (0.65 ± 0.04),nopinone (0.16 ± 0.04), 3-hydroxy-nopinone (0.15± 0.05), CO2 (0.20 ± 0.04), CO (0.030± 0.002), HCOOH (0.020 ± 0.002), the secondaryozonide of -pinene (0.16 ± 0.05), andcis-pinic acid (0.02 ± 0.01). The decompositionof the primary ozonide was found to yieldpredominantly the excited C9-Criegee intermediateand HCHO (0.84 ± 0.04) and to a minor extent theexcited CH2OO intermediate and nopinone (0.16± 0.04). Roughly 40% of the excitedC9-Criegee intermediate becomes stabilised andcould be shown to react with HCHO, HCOOH and H2O. The atmospherically important reaction of thestabilised C9-Criegee intermediate with H2Owas found to result in a nopinone increase of (0.35± 0.05) and in the formation of H2O2(0.24 ± 0.03). Based on the observed products,the unimolecular decomposition/isomerisationchannels of the C9-Criegee intermediate arediscussed in terms of the hydroperoxide and esterchannels. Subsequent reactions of the nopinonylradical, formed in the hydroperoxide channel, lead tomajor products like 3-hydroxy-nopinone but also tominor products like cis-pinic acid. A mechanismfor the formation of this dicarboxylic acid isproposed and its possible role in aerosol formationprocesses discussed.  相似文献   

15.
Improvements of the matrix isolation/electron spin resonance technique for the measurement of NO2, NO3, and RO2 radicals in the atmosphere are described. The use of D2O instead of H2O as the matrix yields a better spectral resolution and, as a consequence, larger a signal-to-noise ratio as well as better identification of the different species. Reference spectra of the different radicals in H2O and D2O matrices are compared. While a large degree of correlation exists amongst the spectra of the different (unsubstituted and substituted) alkylperoxy radicals, the spectra of HO2, CH3C(O)O2, and NO3 show significant differences that allow their distinction in atmospheric samples.A numerical procedure for the analysis of the composite ESR spectra obtained from atmospheric samples was developed. Subtraction of the dominant NO2 signal is performed by matching a reference NO2 spectrum with respect to amplitude, spectral position, and line width to the sample spectrum. The manipulations are performed with the virtually noise-free reference spectrum and are based on physical information. The residual spectrum is then analyzed for RO2 (and/or NO3) by simultaneously fitting up to six different reference spectra.The method was applied to laboratory samples as well as to atmospheric samples in order to demonstrate the ability of retrieving small amounts of HO2 in the presence of large amounts of NO2 and other peroxy radicals. The new algorithm allowed, for the first time, the identification of the HO2 and CH3C(O)O2 radical in tropospheric air at concentrations ranging up to 40 ppt.  相似文献   

16.
In order to investigate the upper troposphere/lower stratosphere (UTLS) region of the earth's atmosphere, ESA/ESTEC (European space agency) is considering the opportunity to develop the spaceborne limb sounding millimeter sensor “MASTER” (millimeter wave acquisitions for stratosphere/troposphere exchange research). This instrument is part of the “atmospheric composition explorer for chemistry and climate interactions” (ACECHEM) project. In addition, ESA/ESTEC is developing the “MARSCHALS” (millimeter-wave airborne receiver for spectroscopic characterization of atmospheric limb sounding) airborne instrument which will demonstrate the feasibility of MASTER. The present paper describes the line-by-line database which was generated in order to meet at best the needs of the MASTER (or MARSCHALS) instrument. The linelist involves line positions, line intensities, line broadening and line shift parameters in the 294–305, 316–325, 342–348, 497–506 and 624–626 GHz spectral microwindows. This database was first generated for the target molecules for MASTER (H2O, O3, N2O, CO, O2, HNO3, HCl, ClO, CH3Cl, BrO). In addition, ten additional molecules (SO2, NO2, OCS, H2CO, HOCl, HCN, H2O2, COF2, HO2 and HOBr) had also to be considered in the database as “possible interfering species” for the retrieval of the target molecules of MASTER. The line parameters were derived, depending on their estimated accuracy, (i) from a combination of spectral parameters included in the JPL and HITRAN catalogs (ii) from data taken into the literature or (iii) using data obtained through experimental measurements (and/or) calculations performed during the present study.  相似文献   

17.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

18.
A method for the estimation of the reaction probability of the heterogeneous N2O5+H2O 2HNO3 reaction using the deposition profile in a laminar flow tube, in which the walls are coated with the condensed aqueous phase of interest, is presented. The production of gas phase nitric acid on the surface followed by its absorption complicates the deposition profiles and hence the calculation of the reaction probability. An estimation of the branching ratio for this process enables a more appropriate calculation to be carried out. Reaction probabilities of N2O5 on substances including some normally constituting atmospheric aerosols, NaCl, NH4HSO4, as well as Na2CO3 are estimated and found to depend on relative humidity and characteristics of the coating used. These fell within the range (0.04–2.0)×10–2.  相似文献   

19.
    
Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号