首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastewater reclamation and reuse is one of the best alternatives for compensating water shortages. Water supply and environmental conservation can be met through wastewater reclamation. Principally, treated wastewater is a reliable water resource, especially for periodic droughts and in arid areas. This study designed and implemented to investigate the full scale application of effluent for irrigation use. A major objective of this study is to assess on health effects and feasibility of crop irrigation by using stabilization ponds effluent of southern Hovaizeh Wastewater Treatment Plant located in Khuzestan Province. Two experimental plots of about 0.5 ha. were constructed. One of the plots irrigated by stabilization pond effluent and the other irrigated by Nisan River water. Basic parameters in two plots such as type of cultivated crops, amount of fertilizer use and lack of soil contamination have been similar in both. The only difference was the type of water applied for irrigation of agricultural crops. It was shown that high salinity of soil reduced the growth rate of agricultural crops. So, removing salinity from area should be performed before cultivation. Results gained on agricultural crops growth in two studied plots showed the growth rate and quality of crops were increased by using of stabilization pond effluent in comparison with Nissan River water.  相似文献   

2.
At present, the prior-established threshold values are widely used to classify contaminated agricultural soils with heavy metals under the cultivation of a variety of crops, without considering the different sensitivity of plants to heavy metals. Evaluation of the characteristics of cadmium transfer from a polluted calcareous soil to cultivated wheat crop and assessment of the efficiency of using the threshold values to reflect the soil pollution risk by cadmium in Zanjan Zinc Town area at the northwest of Iran were the goals of this study. Totally, 65 topsoil (0–20 cm) and corresponding wheat samples of an agricultural region in the proximity of a metallurgical factory were collected and analyzed for cadmium concentration. The results revealed that industrial activities strongly control cadmium distribution in the studied soils. Relatively high bioavailable cadmium contents (mean 0.77 mg kg?1) were found in the soils, notwithstanding their alkalinity. It was observed that just 22.5% of the studied area around the Zinc Town is covered by polluted soils with the cadmium concentration exceeding the maximum permissible concentration of 5 mg kg?1, whereas cadmium concentration in wheat grains of 19 sampled plants is higher than the threshold value of 0.2 mg kg?1. Among these polluted plants, a total of eight samples were grown in areas classified as unpolluted soils with cadmium, based on the soil threshold value. It seems that this misclassification of polluted soils is mainly related to the crop sensitivity to heavy metals uptake from the soil which should be considered.  相似文献   

3.
广西某铅锌矿区废水汇集洼地土壤重金属污染调查与评价   总被引:8,自引:3,他引:5  
覃朝科  易鹞  刘静静  何娜 《中国岩溶》2013,32(3):318-324
对某铅锌矿废水汇集的岩溶洼地土壤重金属镉、铜、铅、锌、铬、砷和汞的含量进行调查分析,运用单项污染指数与综合污染指数相结合的方法对土壤环境质量状况和采用Hakanson潜在生态指数法对土壤重金属污染潜在生态风险进行评价。结果表明,该区块土壤受到重金属镉、锌、汞、铅的严重污染,其污染指数均大于1,尤其是镉污染指数高达88.4,其后依次为锌和汞,铅最小;剖面上,A、B、C层,即0~30 cm、30~60 cm和60~90 cm土壤,均已受到不同程度的重金属污染,而且污染程度A层>B层>C层,其综合污染指数分别为67.0、11.9和8.8,各自的潜在生态风险指数分别为2 921.0、543.4、421.2,对应的潜在生态风险程度分别为极强、强、强。由此可见,该岩溶洼地土壤不仅镉、锌、汞、铅污染严重,而且其生态风险也很大,但土壤中基本没有受铜、铬、砷污染。在该洼地土壤重金属污染物没有清除前,建议禁止种植食用农产品,而改为种植非食用型经济作物。   相似文献   

4.
氨基膨润土对铜镍镉污染土壤的钝化修复研究   总被引:1,自引:0,他引:1  
采集土壤,加入铜、镍和镉制成重金属污染土壤。以四乙烯五胺改性膨润土和膨润土原土作为修复剂,通过模拟酸雨和混合提取剂提取有效态重金属,评价膨润土和氨基膨润土对土壤中铜、镍、镉的钝化效果。结果表明:p H=3. 5的模拟酸雨对各污染土壤中重金属离子的提取率均在0. 1%以下。混合提取剂对污染土壤中有效态金属的提取能力比模拟酸雨强很多。添加膨润土原土和氨基膨润土均能钝化土壤中的铜、镍和镉,氨基膨润土上嫁接的氨基对金属有络合作用,因而比膨润土原土对铜、镍和镉具有更强的钝化能力。综合评价表明氨基膨润土是一种对铜、镍和镉污染土壤具有应用前景的钝化修复材料。  相似文献   

5.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   

6.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots.  相似文献   

7.
湖州市不同土壤重金属的污染现状   总被引:3,自引:1,他引:3  
湖州市是主要的农产品基地,其主要土壤类型有四种,即黄泥土、青紫泥、白泥土和湖松土。样品分析表明重金属元素在黄泥土和青紫泥中较高,白泥土和湖松土中较低。大多数重金属元素相对下蜀土是富集的,超过自然背景值的元素有Cu,Cd及部门土壤中的Pb和Hg。有机质、pH值和Eh值对重金属的含量和化学形态有影响,有机质愈高,重金属的含量愈高;pH值接近中性,重金属的含量亦高。土壤的氧化条件可使大多数重金属变为高价离子,它们的化合物活性较低,但Cr^6 易被植物吸收。湖州土壤中重金属的高值点与工业污水排放和大气沉降有关。土壤中对农作物有危害的重金属元素为Cd和Hg,局部地方为Pb。  相似文献   

8.
陕西潼关金矿区农田土壤Hg污染的环境效应   总被引:2,自引:0,他引:2  
以潼关金矿区农田土壤Hg污染区的小麦、蔬菜、水果中的Hg含量为重点研究对象,与尚未污染的农田土壤区进行对比,研究土壤Hg污染的农作物效应.评价区小麦样本Hg的超标率为78.57%,小麦Hg超标与土壤Hg污染的关系明显.评价区萝卜样本超标率为40%,叶菜、西红柿、苹果、红薯中样本超标率均为100%,对照区果蔬类也全部超标,但明显低于评价区.评价区农作物Hg超标倍数从大到小依次为:青菜>油麦菜>萝卜叶>西红柿>苹果>红薯>小麦>萝卜.土壤Hg污染的环境效应极为严重,矿区环境污染防治刻不容缓.  相似文献   

9.
The hypothesis that freshwater tidal wetlands act as sinks for heavy metals was tested using sewage sludge applied biweekly from March to October 1981 at low treatment (25 g m?2 wk?1) and high treatment (100 g m?1) levels. No differences in aboveground macrophyte standing crop were found except in June when high and low treatment sites had significantly higher (p=0.05) standing crops than control sites. Except for chromium, metal standing stocks in the vegetation on treatment sites did not increase as a result of sludge application. The March litter had significantly higher (p=0.05) concentrations of chromium, copper, lead, and nickel at all sites than the October vegetation, but only high and low treatment litter chromium levels were significantly higher (p=0.05) than control litter. When sludge application terminated in October, the top 5 cm of soil at the high and low treatment sites had retained, respectively, 47 and 43% of the cadmium, 53 and 28% of the chromium, 52 and 0% of the copper, 51 and 0% of the zinc, 31 and 0% of the lead, and 0 and 0% of the nickel applied; only cadmium (15 and 46%, respectively) and chromium (12 and 28%, respectively) were still retained the following March. Thus, freshwater tidal wetlands can retain significant quantities of heavy metals associated with sewage sludge. The vegetation and litter play minor roles while the soil plays a major role in heavy metal retention.  相似文献   

10.
The method of principal component analysis was applied to systematical research on the soil multi-media environment, including soil, surface water, ground water, waterbody sediment and agricultural crops, as well as pollution-inducing wastewater, mullock (or waste ore) and slag in the periphery of a large-sized Pb-Zn mining and smelting plant in a karst area of Guangxi Zhuang Autonomous Region. The results revealed that soils in the area studied have been heavily polluted by Cd, Zn, Pb and Hg, and the levels of these metals in the samples of agricultural crop greatly exceed the standards. The above-mentioned pollutants exist in all soil-multi-media environments. The mullock, slag, wastewater, surface water, ground water, soil, and agricultural crops constitute a composite ecological chain. Therefore, the improper disposal of mullock and slag, and the use of polluted wastewater for agricultural irrigation are the main causes of soil pollution. Heavy metals in the soil have three transition progresses: point (improved soil with slag, ground water inflow plot), linear (river transition) and non-point transition (regional pollution by slag) patterns, and the tailing yard is the most important locus for heavy metals to release into the environment.  相似文献   

11.
The reuse of nutrients and organic matter in wastewater sludge via on agricultural lands application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. The aim of this research is possibility of ground water pollution of south of Tehran because of ten years irrigation with Ni, Cd and Pb borne waste water. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. The soils differed in their texture from sandy to clayey. Each soil sample in duplicate and uniformly packed into PVC columns. Soil samples were irrigated with Cd, Pb and Ni-added wastewater. After irrigating, the columns were cut and the soils separated from sectioned pieces and their heavy metal concentrations (Pb, Cd and Ni) were measured by atomic absorption spectrophotometer by use of HNO3 4N solution. Because of high sorption capacity of these elements by soils, these metals were accumulated in surface layer of the soils. Movement in the soils without lime and organic matter were as low as other samples. Ni has had the most accumulation or the least vertical movement, and Pb the opposite ones.  相似文献   

12.
云南省武定县土壤重金属地球化学分布特征及其来源浅析   总被引:4,自引:0,他引:4  
秦元礼 《地质与勘探》2020,56(3):540-550
为探明西南地区耕地土壤重金属污染的分布特征及来源,选取云南省武定县优耕区为研究区,在分析1802件表层土壤和4条剖面土壤重金属含量的基础上,运用地累积指数法评估重金属污染风险,利用地统计分析、单因子方差分析、正定矩阵分析探讨重金属的空间分布特征、污染水平及潜在来源。8种重金属与云南省背景值相差较小,其中Cr、Ni平均含量高于云南省背景值,是其背景值的1.75和1.14倍,As、Cu、Hg、Ni、Pb和Zn低于其背景值。8种重金属元素呈现东高西低、南高北低的分布趋势,异常区分布规律明显。地累积指数结果表明,8种重金属中仅Cd存在轻微污染,其余元素均处于无污染水平,与以往认为西南地区是地质高背景区、土壤污染严重有较大出入,需要对西南重金属高背景区的观点进行重新认识和修订。研究区内8种重金属主要有3个污染源:矿业开采源、肥料和交通污染源和成土母质源。其中,As、Cu、Hg主要受迤纳厂铜矿开采的影响; Pb、Cd、Zn受刺竹箐铅锌矿床的开采、交通污染和肥料施用的共同影响; Cr、Ni受成土母质影响较大。  相似文献   

13.
A field study was carried out to evaluate long-term heavy metal accumulation in the top 20 cm of a Tunisian clayey loam soil amended for four consecutive years with municipal solid waste compost at three levels (0, 40 and 80 t/ha/y). Heavy metals uptake and translocation within wheat plants grown on these soils were also investigated. Compared to untreated soils, compost-amended soils showed significant increases in the content of all measured metals: cadmium, chromium, copper, nickel, lead and zinc in the last three years, especially for plots amended with municipal solid waste compost at 80 t/ha/y. Wheat plants grown on compost-amended soils showed a general increase in metal uptake and translocation, especially for chromium and nickel. This heavy metal uptake was about three folds greater in plots amended at 80 t/ha/y as compared to plots amended at 40 t/ha/y. At the end of the experimental period, the diluting effect resulting from enhanced growth rates of wheat plants due to successive compost applications resulted in lower concentrations in the plants (grain part) grown on treated plots. On the other hand, chromium and nickel were less mobile in the aerial part of wheat plants and were accumulated essentially in root tissues. Plant/soil transfer coefficients for compost-amended treatments were higher than threshold range reported in the literature, indicating that there was an important load/transfer of metal ions from soils to wheat plants.  相似文献   

14.
Levels of heavy metals are found in soils and waters of the major tributary valleys of the Jordan Valley. Heavy metal content in soils irrigated by treated waste water were measured for a 40 km reach of Zarqa River. Soil samples from eight different sites along the upper course of this river were analyzed to determine the concentration of selected heavy metals (CO, Cr, Cu, Pb, Ni, Zn). Silt forms the major component of the soils with an average of 54%. Clay fractions show an increase with depth from 17 to 41%. Trends in particle size distribution and metal contents were compared across sample sites. Samples contained moderate to considerable levels of Pb and Ni. Concentrations of Cu and Cr ranged between 33–59 and 65–90 ppm, respectively. These values represent a slight to moderate class of pollution. The concentration of Cr shows a decrease with depth and distance from the waste water plant. Cu, Zn, and Ni show increasing concentrations with depth but Pb and CO do not. The concentrations of the measured heavy metals increases near the waste water treatment plant but decreases with distance from the plant due to precipitation in the stream bed and dilution with stream water. This decline in metal content with distance from the treatment plant suggests that most metals reaching floodplain soils may derive from the same source. Although current metal concentrations are low to moderate, floodplain surface soils in this area should be regarded as a potential source for future heavy metal pollution downstream.  相似文献   

15.
In this study, raw and treated wastewaters were reused for potato cultivation in order to verify the effect of wastewater on crop yield, crop’s heavy metals’ concentration as well as some major traits of potato. To this regard, a completely randomized test was designed with five water treatments and three replications. The watering were as follows: raw wastewater (T1), treated wastewater (T2), a combination of 50 % raw wastewater and 50 % fresh water (T3), a combination of 50 % treated wastewater and 50 % fresh water (T4), and fresh water (T5). The experiments were run during October 2009–June 2010 in the greenhouse of Bu-Ali Sina University. The results show that the effects of treatments were significant on the length and number of stems per plant (p < 0.05). The number of nodes and weight of tubers, crop yield and heavy metal (cadmium, nickel and lead) concentration in shoots and tubers were also significant (p < 0.01). The results indicated that the highest length of stem (55.44 cm) was obtained in T2 which had no significant differences from that of T1. The maximum and minimum tuber weights and crop yield were obtained in T1 and T5, respectively. Based on crop yield rate, the watering ranked as follows: T1 > T3 > T2 > T4 > T5. The maximum and minimum heavy metal values were observed in T1 and T5, respectively. Based on the cadmium, nickel and lead accumulations in shoots and tubers (except cadmium in shoots), the watering treatments ranked as: T1 > T3 > T2 > T4 > T5.  相似文献   

16.
Irrigation by treated wastewater (TWW) can pollute the soil by different organic and inorganic compounds. The pollution level can depend on the irrigation period, soil nature, and wastewater characteristics. Since 1989, the Zaouit Sousse area (central Tunisian) has been irrigated by treated wastewater. The irrigation period and the mineralogy of soil composition change from one locality to another in Zaouit Sousse area. In this work, we are interested in organic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) evolution. One control soil (S1) and four irrigated areas soil (S2, S3, S4, and S5) were chosen. The soil samples differ by the irrigation period and soil characteristics. Total PAHs content in control soil was 66.2 ng?g?1 and in irrigated areas were between 46.23 and 129.51 ng?g?1. The PAHs content in irrigated soil, except S5 which has been irrigated with wastewater for 20 years and contains the highest clay fraction percent, decreased with the irrigation period (from 0 to 20 years). The microbial degradation may decrease the PAHs concentrations in the soil thanks to bacterium brought by TWW and the important soil permeability. Concentration of heavy metals ranged from 24 to 1,320 μg?L?1. The HMs (Cu, Cr, Zn, Fe, Ni, Pb, and Cd) contents decreased with the irrigation period (from 10 to 20 years). So, following the PAHs aerobic bio-degradation, this organic compound discharges their absorbed heavy metals which leached to deeper levels. The Cr, Cu, Al, Zn, and Cd mobility depend on the clay yield too. However, the PAHs and Pb mobility are also related to humic substance quantities. Cr and Cu have affinities both to clay and humic substance quantities.  相似文献   

17.
Pu  Wanqiu  Sun  Jiaqi  Zhang  Fangfang  Wen  Xingyue  Liu  Wenhu  Huang  Chengmin 《中国地球化学学报》2019,38(5):753-773

Metallic ore mining causes heavy metal pollution worldwide. However, the fate of heavy metals in agrosystems with long-term contamination has been poorly studied. Dongchuan District (Yunnan, southwest China), located at the middle reaches of the Xiaojiang River, is a well-known 2000-year-old copper mining site. In this work, a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin. Furthermore, river water, soil, and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem. V, Zn, and Cu soil levels (1724, 1047, and 696 mg·kg−1, respectively) far exceeded background levels. The geo-accumulation indexes (Igeo) showed that cultivated soils near the mining sites were polluted by Cd and Cu, followed by Zn, V, Pb, Cr, Ni, and U. The pollution index (Pi) indicated that rice in the area was heavily polluted with Pb, Cr, Cd, Ni, Zn, and Cu. The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil. The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold, indicating a potential carcinogenic risk to consumers. The Nemerow integrated pollution index and health index indicated that the middle of the river (near the mining area) was the heaviest polluted site.

  相似文献   

18.
黄春雷  宋金秋  潘卫丰 《地质通报》2011,30(9):1434-1441
基于对浙东沿海某典型固废拆解区重金属元素大气干湿沉降特征的研究,探讨了重金属元素干湿沉降输入对土壤环境的影响。结果表明,研究区露天焚烧等不规范的固废拆解行为造成大气质量恶化,对土地质量造成严重的负面影响。区内干、湿沉降中Cd、Cu、Pb、Zn、Ni等重金属元素的含量均远高于浙江省干、湿沉降平均值和其它相关标准值,并且其年沉降通量在省内居高,尤其是Cu、Zn两种元素每年每平方百米沉降通量分别达7108g、11420g。研究显示,大气沉降能大大增加研究区土壤重金属元素的含量水平,Cu、Zn、Cd、Pb平均年增加量分别达3426ng/g、5819ng/g、6.50ng/g、582ng/g,并且年增加率较大,Pb、Cu、Zn等重金属元素的年增加率达0.5%以上。  相似文献   

19.
Sites co-contaminated with organic and metal pollutants are common and considered to be a more complex problem as the two components often causes a synergistic effect on cytotoxicity. Phytoremediation has been proposed as a cost-effective technology for treating heavy metal or organic contamination and may be suitable for remediation of co-contaminated soil. This study investigated the concurrent removal of pyrene and cadmium in co-contaminated soil by growing maize in a pot experiment. At the end of 60 day culture, pyrene in spiked soil diminished significantly, accounting for 21–31 % of the initial extractable concentration in unplanted soil and 12–27 % in planted soil. With the increment of cadmium level, the residual pyrene both in unplanted and planted soil tended to increase. Although the presence of cadmium increased the accumulation of pyrene in maize, plant accumulation only account for less than 0.30 % of the total amount of the dissipated pyrene in vegetated soils. It implied that plant-promoted microbial biodegradation was the predominant contribution to the plant-enhanced dissipation of pyrene in co-contaminated soil. Unlike pyrene, heavy metal cadmium cannot be degraded. It was observed that maize can concurrently removed about on the average 0.70 % of the total cadmium amount in soil by plant uptake, but cadmium phytoextraction would be inhibited under contamination of pyrene. Maize CT38 can normally grow in the co-contaminated soil with high level cadmium and pyrene and can effectively remedy the sites co-contaminated with these two types of contamination, which suggest the possibility of simultaneous phytoremediation of two different contaminant types.  相似文献   

20.
我国部分市郊农田的重金属污染与防治途径   总被引:12,自引:2,他引:12  
分析了我国部分主要城市农田土壤及农作物重金属污染状况,以了解土壤中与农作物中重金属污染物间的相互关系、变化趋势及造成污染的影响因素。结果表明,我国各大城市的农田土壤及农作物都存在不同程度的重金属污染,北方地区的土壤及农作物受重金属污染程度普遍高于南方。重金属在农作物与土壤中的含量一般呈正相关关系,受多种因素影响。对于已污染的土壤,可采用农业工程措施、生物修复法和施用改良剂等予以治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号