首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seismic refraction/wide-angle reflection experiment was undertaken in the Levant Basin, eastern Mediterranean. Two roughly east–west profiles extend from the continental shelf of Israel toward the Levant Basin. The northern profile crosses the Eratosthenes Seamount and the southern profile crosses several distinct magnetic anomalies. The marine operation used 16 ocean bottom seismometers deployed along the profiles with an air gun array and explosive charges as energy sources. The results of this study strongly suggest the existence of oceanic crust under portions of the Levant Basin and continental crust under the Eratosthenes Seamount. The seismic refraction data also indicate a large sedimentary sequence, 10–14 km thick, in the Levant Basin and below the Levant continental margin. Assuming the crust is of Cretaceous age, this gives a fairly high sedimentation rate. The sequence can be divided into several units. A prominent unit is the 4.2 km/s layer, which is probably composed of the Messinian evaporites. Overlying the evaporitic layer are layers composed of Plio–Pleistocene sediments, whose velocity is 2.0 km/s. The refraction profiles and gravity and magnetic models indicate that a transition from a two layer continental to a single-layer oceanic crust takes place along the Levant margin. The transition in the structure along the southern profile is located beyond the continental margin and it is quite gradual. The northern profile, north of the Carmel structure, presents a different structure. The continental crust is much thinner there and the transition in the crustal structure is more rapid. The crustal thinning begins under western Galilee and terminates at the continental slope. The results of the present study indicate that the Levant Basin is composed of distinct crustal units and that the Levant continental margin is divided into at least two provinces of different crustal structure.  相似文献   

2.
R. T. Cox 《Tectonophysics》1999,310(1-4):69-79
Bathymetry and the geoid anomaly of the northern flank of the Hawaiian swell is broader and higher than the southern flank, and it is characterized by higher heat flow than the axis or southern flank. It is here proposed that the northern flank of the Hawaiian swell has been augmented by heat conducted from the hotspot conduit into the upper mantle then transported northward of the volcanic axis by flow in the upper mantle (325°) that is more northerly than Pacific plate motion (292°). By assuming that the deep upper mantle is decoupled from the Pacific plate and is flowing at 325° to the northwest, changes in direction and rate of volcanic propagation and in geochemistry along individual volcanic segments of the Hawaiian volcanic chain can be interpreted in terms of tank experiment results showing that a volcanic hotspot conduit breaks into diapirs when tilted by mantle flow. Hawaiian volcanoes are aligned in en-echelon segments, and the Hawaiian Islands are the two most recent segments. For an individual segment, older northwestern volcanoes are aligned nearly parallel to the 292° plate motion direction, and they propagated to the southeast at approximately the same rate as the 92 km/m.y. speed of northwestward plate motion. In contrast, the alignment of the younger southeastern volcanoes is close to 325°, and they show a conspicuous acceleration in propagation of volcanism marked by out-of-sequence eruptions. Within the model proposed here, diapirs rise from instability nodes that develop along the tilted conduit of a mantle hotspot plume as it is sheared in the direction of deep upper-mantle flow and each diapir gives rise to a single volcanic center. As tilting progresses, diapirs form at lower levels along the conduit in more upstream positions of the mantle flow zone, rise sequentially into the decoupled lithosphere, erupt sequentially, and are translated in the direction of plate motion (older, northwestern Hawaiian Islands). Eventually, flow in the highly tilted conduit is impeded to the degree that the remaining upstream conduit breaks into a number of diapirs that rise together into the lithosphere. These late diapirs, translated as a group aligned in the direction of horizontal mantle flow, erupt over a relatively short time span and show out-of-sequence volcanism (younger, southeastern Hawaiian Islands). At this stage, a new cycle of rising and tilting will initiate the next en-echelon segment.  相似文献   

3.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

4.
The South China Sea (SCS) is a region of interaction among three major plates: the Pacific, Indo-Australian and Eurasian. The collision of the Indian subcontinent with the Eurasian plate in the northwest, back-arc spreading at the center, and subduction beneath the Philippine plate along Manila trench in the east and the collision along Palawan trough in the south have produced complex tectonic features within and along the SCS. This investigation examines the satellite-derived gravity anomalies of the SCS and compares them with major tectonic features of the area. A map of Bouguer gravity anomaly is derived in conjunction with available seafloor topography to investigate the crustal structure. The residual isostatic gravity anomaly is calculated assuming that the Cenozoic sedimentary load is isostatically compensated. The features in the gravity anomalies in general correlate remarkably well with the major geological features, including offsets in the seafloor spreading segments, major faults, basins, seamounts and other manifestations of magmatism and volcanism on the seafloor. They also correlate with the presumed location of continental-oceanic crust boundary. The region underlain by oceanic crust in the central part of the SCS is characterized by a large positive Bouguer gravity anomaly (220–330 mgal) as well as large free-air and residual isostatic anomalies. There are, however, important differences among spreading segments. For example, in terms of free-air gravity anomaly, the southwest section of mid-ocean has an approximately 50 km wide belt of gravity low superimposed on a broad high of 45 mgal running NW–SE, whereas there are no similar features in other spreading segments. There are indications that gravity anomalies may represent lateral variation in upper crustal density structure. For instance, free air and isostatic anomalies show large positive anomalies in the east of the Namconson basin, which coincide with areas of dense volcanic material known from seismic surveys. The Red River Fault system are clearly identified in the satellite gravity anomalies, including three major faults, Songchay Fault in the southwest, Songlo Fault in the Northeast and Central Fault in the center of the basin. They are elongated in NW–SE direction between 20±30'N and 17°N and reach to Vietnam Scarp Fault around 16°30'N. It is also defined that the crustal density in the south side of the Central Basin is denser than that in the north side of the Central Basin.  相似文献   

5.
We use a thin sheet approach to investigate the effects induced by the Alpine collision on the deformation and regional stress in northern Europe, with special emphasis on the NE German Basin. Here new seismic crustal studies indicate a flexural-type basin, which may have been induced by compressive forces transmitted from the south, due to the Alpine orogeny. Finite-element techniques are used to solve the equations for the deformation of a continuum described by a linear creep rheology and a spatial resolution of about 0.5°. The model has been constrained by stress and seismic data. We show that a relatively strong lithosphere below the northern margin of the German Basin, at the transition with the Baltic Shield, may explain the characteristic regional stress field, in particular the fan-like pattern which is observed within the region. Furthermore, the predicted strain rate pattern resembles the seismically recognizable undeformed area of the North German Basin.  相似文献   

6.
    海洋构造地球物理或构造物理学是海洋地球科学研究的前沿。它是构造地质学和地球物理学互相渗透、互相促进的一门很有前景的新兴边缘学科。80年代这一新兴学科有较明显的发展,90年代这一学科在板块运动、驱动机制的定量研究以及在巨型断裂、造山带与盆地形成机理等方面的研究将有重要的突破,我国在90年代应加强对南海这一西太平洋最大的边缘海的构造地球物理研究。  相似文献   

7.
Magnetic anomaly and seismological data define segments of active seafloor spreading and associated magnetic lineations trending ENE in the Woodlark Basin. The total opening rate has been approximately 6 cm/yr for the last 1 m.y. Spreading rates diminish by over 10% from east to west along the Woodlark spreading system implying a pole of current opening 15°–20° to the west. Commencement of seafloor spreading in the basin has apparently been time-transgressive, beginning prior to 3.5 m.y. in the east, and at successively later times to the west. Earthquake focal mechanisms and geological evidence suggest that the land areas bounding the western end of the Woodlark Basin are undergoing tensional deformation. We believe that eventually the Woodlark Basin plate boundary will propagate westward through the d'Entrecasteaux Islands into the Papuan peninsula. Hitherto unreported shallow seismicity associated with the northern margin of the NE-trending section of the Woodlark Rise probably reflects partial decoupling of the Woodlark and Solomon basins, possibly due to mechanical difficulties in subducting the young Woodlark lithosphere.Analysis of the relative motions between the Solomon, Indo-Australian, and Pacific plates shows that the Woodlark spreading system has been subducted at high rates (> 10 cm/yr) beneath the Solomon Islands during the opening of the Woodlark Basin. Several tectonic and geological features limited to the region of interaction of the Woodlark Basin with the Solomon Trench and arc may be symptomatic of ridge subduction. These features include high heat flow in the Solomon Trench, which shoals to 4 km; low levels of seismicity and only shallow hypocenters; and voluminous eruptions of high olivine basalts and basaltic andesites extremely close to the trench axis. This close association in space and time of an unusual volcanic suite with ridge subduction implies a strong dependence of the petrogenesis on the tectonic regime.A combination of this study of the Woodlark Basin and the previous study of the Bismarck Basin (Taylor, 1979) provides a reconstruction of the positions of the continents, ocean basins, and island chains in northern Melanesia for mid-Pliocene time. In accepting the existence of a Solomon plate, we can explain the trench-like structure off the Trobriand margin of New Guinea, the occurrence of Late Cenozoic calc-alkaline volcanism along the Papuan peninsula, and the presence of intermediate depth seismicity beneath the north Papuan peninsula. The rapid changes in relative motions along or across the New Ireland-Solomons chain over the past 3.5 m.y. may explain the spatial and temporal changes in igneous activity observed on these islands.  相似文献   

8.
Interpretation of seismic refraction data in the central sector of Tocantins Province, Central Brazil, has produced a seismic crustal model with well-defined upper, intermediate, and lower crust layers having smooth velocity gradient in each layer. The depths to Moho vary from 32 to 43 km, and mean crustal P velocity varies from 6.3 km/s, beneath Goiás magmatic arc on the western side, to 6.4 km/s, below Goiás massif in the central portion and the foreland fold-and-thrust belt on the eastern side. The behaviour of the lower crust layer allows an improved understanding of regional gravimetric features of the central and northern sectors of Tocantins Province and suggests subduction of the Amazon plate in Central Brazil. In the southeastern sector, the refraction experiment resulted in the detection of a thinner crust (38 km) below Brasília fold belt and a thicker crust (41 km) below Paraná basin and São Francisco craton (42 km). The upper crust beneath Paraná Basin is around 20 km thick, whereas it is less than 10 km thick below the craton. These results bring new insights into the geological history of the central and southeastern sectors of Tocantins Province.Gravimetric measurements in the central sector of Tocantins Province delineate a high and a low anomaly separated by a steep gradient with a NE direction. The axis of the gradient seems to bend still further to NE in the northern sector of that province, whereas the gravimetric high continues northwards, defining a separation between them. This suggests that those features belong to different tectonic processes that occurred during Tocantins Province orogenesis. The gravimetric model, which incorporates seismically resolved structure beneath Tocantins Province, better matches the observed gravimetric data.Although tectonic movements have only been monitored with high-precision GPS for short time interval (1999–2001), the results suggest observable deformations. The main seismicity of Central Brazil, the Goiás–Tocantins seismic belt, seems to be spatially associated with the large gravimetric high anomaly and with the observed tectonic deformation.  相似文献   

9.
The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.  相似文献   

10.
Shear wave splitting parameters from local deep-focus and crustal earthquakes beneath southern Sakhalin and northern Hokkaido have been measured. The study of the split shear wave amplitude, polarization, and splitting parameter distribution revealed their correlation with the geometry of the subsiding Pacific Plate and horizontal heterogeneity of the rheological properties and viscosity of the medium. Comparison of the observed data with those modeled in anisotropic media allows the mantle flow to be oriented NNW beneath southern Sakhalin and northern Hokkaido. Based on the split shear wave time delays, the degree of mantle anisotropy is estimated to be around 1–2% beneath southern Sakhalin and 1.5–2.5% beneath northern Hokkaido. A relatively high anisotropy (2–15%) from local crustal earthquakes is found beneath the Central Sakhalin Fault.  相似文献   

11.
《Tectonophysics》1999,301(1-2):61-74
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.  相似文献   

12.
太平洋板块、印度板块和欧亚板块的演化对中国近海沉积盆地的沉降及充填具有控制作用。根据地幔对流及地壳拉伸特征可将中国近海沉积盆地沉降类型划分为被动、主动和组合热沉降型3种。不同沉降类型分别具有不同的盆地结构,其中被动热沉降型以断陷为主,主动热沉降型以坳陷为主,组合热沉降型则是两种盆地结构的叠加或侧加。中国近海北部板内沉积盆地沉降类型以被动热沉降为主,远离海洋,受海侵影响较小,以陆相沉积体系为主;中部板缘沉积盆地沉降类型为被动侧加主动热沉降,水体整体较浅,坡折及三角洲发育规模小;南部板缘沉积盆地沉降类型也为被动侧加主动热沉降,水体整体较深,坡折及三角洲发育规模大。  相似文献   

13.
祁连造山带处在特提斯构造域的北缘,经历了早古生代原特提斯洋发育以来的构造演化,是青藏高原东北缘高原隆升与扩展的关键构造带。本文依据区域地质调查与构造地质填图,结合前人地球物理场资料,阐述了中国西北和祁连造山带断裂构造体系特征。通过超宽频大地电磁测深(MT)剖面数据采集处理,以及浅、中—深层电性剖面反演与构造解释,分析了祁连造山带全地壳深部结构特征与盆山耦合关系,揭示了原特提斯洋构造域北祁连洋板块向南和向北进行双向俯冲的化石俯冲带深部结构特征;俯冲消减的北祁连洋板块的宽度约在600 km以上。其中,北祁连洋向南在柴达木—祁连地块之下的俯冲作用角度较缓,俯冲带向南延伸的距离较远,其俯冲断离的板片可以达到现今柴达木盆地的北缘;北祁连洋向北的俯冲作用产状较陡,其俯冲断离的板片具有向南陡倾的产状倒转特征,可能与中生代以来、特别是印度—亚洲大陆碰撞的远程效应引起的挤压构造变形有关。大地电磁测深剖面的浅层反演与构造解释,验证了祁连山北缘断裂以北发育的榆木山逆冲推覆构造,榆木山构成飞来峰构造,将早白垩世酒泉盆地的一个分支掩盖在外来的逆冲推覆体之下;飞来峰之下具有油气勘查前景。根据早白垩世晚期普遍发育的伸展作用,限定榆木山逆冲推覆构造发育的时间在早白垩世早期,从而提供了青藏高原北缘早白垩世早期高原隆升与扩展的证据。综合前人资料和本研究成果,建立了祁连造山带自新元古代以来的构造演化概念模型。  相似文献   

14.
Many objections have been raised as to the ability of subcontinental lithospheric mantle to produce voluminous amounts of basalt, because this upper part of the mantle is thought to be refractory, and the geotherm is rarely above the peridotite solidus at these depths under continents. However, in the Pacific Northwest of the USA during the Neogene, the subcontinental lithospehric mantle has been proposed as a key source for basalts erupted within the northern Basin and Range, and for the Columbia River flood basalts erupted on the Columbia Plateau. An alternative explanation to melting in the subcontinental lithospheric mantle, which equally well explains the chemical compositions thought to originate there, is that these magmas were contaminated by crust of varying ages. Calc-alkaline lavas, which occupy the Blue Mountains in the center of this region, hold clues to the latter process. Their elevated trace element ratios (e.g., Ba/Zr, K2O/P2O5), coupled with differentiation indicators such as Mg? [molar Mg/(Mg?+?Fe)], and Sr, Nd, and Pb isotopic compositions, can most reasonably be explained by crustal contamination. Appraisal of continental peridotite xenolith data indicates that high trace element ratios such as Ba/Zr in continental basalts cannot result from melting in the subcontinental lithospheric mantle. Instead, as with the calc-alkaline lavas, these high ratios in the tholeiites most likely indicate crustal contamination. Furthermore, the peridotite xenoliths do not have a relative depletion in Nb and Ta that is observed in most of the lavas within the region. Relatively minor volumes of tholeiites erupted in late Neogene times in the northern Basin and Range (Hi-Mg olivine tholeiites) and Columbia Plateau (Saddle Mountains basalts), are the only lavas which have trace element and isotopic compositions consistent with being derived from, or largely interacting with a subcontinental lithospheric mantle in the Pacific Northwest. In contrast to the prior studies, we suggest that the mantle sources for most of the basalts in this region were ultimately beneath the lithospheric mantle.  相似文献   

15.
THE DECOLLEMENT IN THE QIANGTANG BASIN, TIBET  相似文献   

16.
The Tarim Basin Craton is located in the center of the Tarim Basin. Since the beginning of the Miocene, the tectonic activity has been weaker in the Tarim Basin Craton than in the marginal depression and the peripheral orogenic belts. This study investigates the tectonic movements in the Tarim Basin Craton by calculating the sedimentation rates and constructing balanced cross-sections based on well, seismic and geologic data. The tectonic movements in the Tarim Basin Craton have mainly been revealed by geological processes such as sedimentation and subsidence, structural inversion, changes in the structural feature, migration of the structural highs, and faulting. The Neogene sedimentary strata were mainly deposited in two sedimentation centers, the southern and northern sedimentation centers, and the strata in the Central Uplift Zone are relatively thin. The different depressions in different geological periods experienced wide variations in tectonic activity. Tectonic subsidence was significant and the sedimentation rates were high in the Tarim Basin Craton during the Pliocene Period (phase II). During the Neotectonic period, the stresses in the South-North direction converged in the Central Uplift Zone (the Bachu uplift–Central Tarim uplift), and the tectonic activity in this region was more intense than that in the Northern Depression and the Maigaiti Slope in the southwest. In addition, the scale of the paleo-uplift, including paleo-North Tarim Uplift and paleo-Central Uplift Zone, gradually decreased. The faults and fault systems developed zonationally in Neotectonic formations in different structural units, and always distributed discontinuously in vertical direction in sections.  相似文献   

17.
The Dingshan area located in the northern part of the Junggar Basin of northwestern China is a significant prospect area for sandstone-type uranium deposits in China, where mainly Cenozoic rocks were deposited. The Cenozoic strata can be divided into four units according to the prior data and our own field observation. Sedimentary studies indicate that most Cenozoic strata were deposited under a hot and arid climate in a continental environment. The sedimentary facies are alluvial-fan, meandering-fluvial, and fluvio-lacustrine. Field investigation and interpretation of satellite images suggest that Cenozoic tectonics in the area is characterized by reactivation of early deep-seated thrusts, resulting in extensional fractures and formation of many small depressions in the shallow crustal level. Measurement of joint orientations suggests that regional shortening direction trends in north–south in the middle Pleistocene as indicated by the ESR (Electronic Spin Resonance) age of 0.1–0.4 Ma obtained from fault gouge and gypsum deposits. A four-stage sedimentation-tectonic evolution model of the northern Junggar Basin during the Late Cenozoic can be established based on reconstruction of sedimentary filling processes and Cenozoic tectonic movements. We suggest that landform evolution and groundwater movement are controlled by active tectonics, indicating that Late Cenozoic tectonic activities may also play important roles in the formation of sandstone-type uranium deposits. Therefore, a new metallogenic model for sandstone-type uranium deposits is proposed.  相似文献   

18.
详细的深部结构信息是深入认识华北克拉通显生宙改造和破坏的重要依据。基于密集流动地震台阵和固定台网记录的远震P波和S波接收函数资料,获得了跨越华北克拉通东、中、西部的3条剖面的岩石圈和上地幔结构图像,揭示了克拉通不同区域深部结构特征的显著差异。与东部普遍减薄的岩石圈(60~100km)相比,中、西部表现出厚、薄岩石圈共存的强烈横向非均匀性,既在稳定的鄂尔多斯盆地之下保留着厚达200km的岩石圈,又在新生代银川—河套和陕西—山西裂陷区存在厚度<100km的薄岩石圈,差异最大的厚、薄岩石圈仅相距约200km。岩石圈厚度在东、中部边界附近的约100km横向范围内显示出20~40km的迅速增加。岩石圈厚度的快速变化与地表地形从东向西的突然改变以及南北重力梯度带的位置大致吻合,并对应于地壳结构、地幔转换带厚度和660km间断面结构的快速变化。这种从地表到上地幔底部深、浅结构的耦合变化特征表明,东西两侧区域在显生宙可能经历了不同的岩石圈构造演化和深部地幔动力学过程。克拉通东部薄的地壳、岩石圈和厚的地幔转换带以及复杂的660km间断面结构可能与中生代以来太平洋板块深俯冲及其相关过程对这一地区岩石圈的改造和破坏有关;而中、西部存在显著减薄的岩石圈这一观测结果,并结合岩石、地球化学资料表明,克拉通岩石圈改造和减薄不仅发生在东部,而且可能影响了包括中、西部在内的更广泛的区域。岩石圈薄于100km的中、西部裂陷区可能与先前存在于岩石圈中的局部构造薄弱带相联系。这些古老岩石圈薄弱带可能经历了后期构造事件的多次改造,并在新生代印度—欧亚陆陆碰撞过程中被进一步弱化、减薄,最终造成地表裂陷。另一方面,中、西部总体较厚的地壳、岩石圈以及正常偏薄的地幔转换带表明,同太平洋深俯冲对东部的作用相比,包括印度—欧亚大陆碰撞在内的多期热-构造事件对该地区的构造演化影响相对较弱,不足以大范围改造和破坏高强度的克拉通岩石圈地幔根,从而造成了该地区现今岩石圈结构的高度横向不均匀。  相似文献   

19.
东海陆架盆地类型及其形成的动力学环境   总被引:1,自引:0,他引:1  
张建培  张田  唐贤君 《地质学报》2014,88(11):2033-2043
东海陆架盆地位于欧亚板块东南缘,处于华南陆块(包括西部的扬子地块和东部的华夏地块)之上.其基底是华夏地块在东海陆架的延伸,也是西太平洋大陆边缘构造域的重要组成部分.从全球板块构造格局分析,东海陆架盆地处于西太平洋三角带区域,是印度-澳大利亚板块和太平洋板块与欧亚板块巨型汇聚的地带,也是全球汇聚中心,其东西两侧分别与特提斯和西太平洋构造域演化息息相关.总体来说,东海陆架盆地是“欧亚板块与太平洋板块之间的碰撞、俯冲、弧后扩张,印度-澳大利亚板块与欧亚板块之间的汇聚、碰撞、楔入的远程效应,以及地球深部动力学作用”共同叠加、复合作用形成的弧后盆地.其形成机制符合被动扩张模式,向东的地幔流和软流圈下降流是导致弧后扩张的主要地球深部动力来源.  相似文献   

20.
The modern Tianshan Mountains and their surrounding basins have mainly been shaped by the far field effects of the Cenozoic India-Asia collision. However, precollision topographic evolution of the Tianshan Mountains and its impacts on the Junggar and Turpan Basins remain unclear due to the scarcity of data. Detrital zircon U-Pb dating of 14 new and 23 published samples from Permian to Neogene strata in the northern Western Tianshan Mountains, northern and southern Bogda Mountains and Central Turpan Basin, are combined with sedimentary characteristics (lithofacies, petrofacies and paleocurrent data) to investigate the temporal and spatial changes in sediment provenances. Based on the age characteristics of the source rocks in the Tianshan Mountains, the detrital zircons are divided into three groups: pre-Carboniferous zircons, mainly from the Central Tianshan Mountains; Carboniferous to Permian zircons, mainly from the North Tianshan and Bogda Mountains; and Mesozoic zircons, mainly from syn-depositional volcanic activity. The topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins can be generally divided into six stages. (1) Positive-relief Tianshan and Bogda Mountains and a rifted marine basin formed during the Early Permian to early Middle Permian following late Carboniferous orogenesis, as evidenced by interbedded alluvial fan conglomerates and postcollisional extension-related volcanic rocks along the basin margins, by marine deposits far from the basin margins and by the predominance of Carboniferous to Permian detrital zircons. (2) Fluvial to lacustrine deposits in the modern southern Junggar and Turpan Basins are characterized by abundant pre-Carboniferous zircons and consistently northward-flowing paleocurrents, indicating the submergence of the Bogda Mountains and a contiguous Junggar-Turpan continental depression basin during the late Middle Permian to the Triassic. (3) The Bogda Mountains began to uplift in the Early Jurassic, resulting in opposing paleocurrent directions, a sudden increase in sedimentary lithic detritus and the dominance of Carboniferous to Permian detrital zircons along the southern and northern margins of this range. (4) In contrast to the uplift of the Bogda Mountains, the other parts of the Tianshan Mountains experienced gradual peneplanation from the Early Jurassic to the Middle Jurassic, as confirmed by widespread fluvial to lacustrine deposits, even inside the modern Tianshan Mountains, and by the dominance of pre-Carboniferous detrital zircons. (5) The dominance of Carboniferous to Permian zircons in the southern Junggar Basin suggests the West Tianshan Mountains were uplifted during the Late Jurassic, while the dominance of pre-Carboniferous zircons in the Central Turpan Basin indicates continuous peneplanation in the Eastern Tianshan Mountains. (6) The initial shape of the Tianshan Mountains-Junggar Basin-Turpan Basin system was constructed in the Late Jurassic but was modified in the Cenozoic by the India-Asia collision, resulting in much higher Western Tianshan and Bogda Mountains, low Eastern Tianshan Mountains and well-developed foreland basins. These Cenozoic changes were recorded by the rapid cooling of apatites, the dominance of Carboniferous to Permian zircons in the southern Junggar Basin and northern Turpan Basin, and the dominance of pre-Carboniferous zircons in the Central Turpan Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号