首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
于道永 《海洋预报》1996,13(2):43-50
本文用线性回归分析方法,分1985年以前和1992年以前两个时段,对我国沿岩25个验潮站近百年来的海平面资料进行了系统分析,计算了两个时段相对海平面变化的年速率和平均海面高度,论述了海平面变化的主要控制因素,并对未来海平面变化趋势进行了预测。计算结果表明,近百年来我国沿岸相对海平面在总体上不但持续上升,而且近年来上升速率普遍加快;根据海平面变化的主要控制因素变化趋向,预计到下世纪中叶前后,全球性海  相似文献   

2.
中国沿岸现代相对海平面上升加剧   总被引:5,自引:0,他引:5  
本文用线性回归方法,分两个时段分析了中国沿岸25个验潮站相对海平面的年变化速度,计算了相应时段的平均海面,结果表明,中国沿岸现代相对海平面上升加剧。另外,本文还对海平面变化原因进行了讨论。  相似文献   

3.
用统计学的方法对浙江沿岸海平面进行了研究, 采用多种海平面上升预测模式进行了计算和预测, 结果表明: 浙江沿岸的海平面存在明显的季节变化, 其变化曲线浙北、浙中沿岸为单峰型, 而浙南沿岸为双峰型, 南北地域差异较大。浙江沿岸过去30 a 间海平面平均上升速率为(2.63±0.06) m m /a。研究还表明, 未来浙江沿岸海平面还将上升, 按模式计算, 至2050年上升29 cm , 到2100 年估计上升值为60 cm 。  相似文献   

4.
区域海平面变化是目前气候变化研究的热点问题。海平面变化具有时间和空间的异质性,分析海平面变化,应充分考虑时间和空间的差异。基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、最小二乘法,利用卫星高度计、验潮站数据,分析了1993—2016年间中国近海及周边海域海平面的时空变化规律。利用EEMD,计算了1993—2016年中国近海海平面变化空间结构的时间变化规律。结果表明中国近海海平面持续升高,但海平面变化在空间分布和时间上的变化并不均匀。空间结构大致分三个部分:大陆沿岸海平面持续上升且上升速率逐年增加,近海海区升高速率逐年降低,而研究区域内的西太平洋西部海区先减速升高又加速降低。分别利用EEMD分解和线性最小二乘拟合算法计算了1993—2016年中国近海海平面平均上升速率的空间分布,结果表明两种方法得到的海平面升高速率的空间分布大致吻合。两种方法均显示沿海地区的上升速率远大于近海海区,沿海地区上升速率大约为6 mm/a,近海海区上升速率大约为2 mm/a。但EEMD方法显示在广东沿岸和靠近赤道部分区域的上升速率更大。分别计算了大陆沿岸、近海及西太平洋西部海区三个海区内空间平均的海平面时间变化的线性及非线性趋势。非线性趋势显示大陆沿岸海区海平面加速上升,上升速率由1993年的3.65 mm/a,增加到2016年的5.03 mm/a;近海地区海平面上升速率逐年变小,由1993年的4.51 mm/a,减缓至2016年的3.8 mm/a;西太平洋西部海区海平面先减速上升,后加速下降,从1993年的上升率为9.5 mm/a,逐渐变化到2016年的下降率为2.27 mm/a。利用验潮站数据分析了大连、坎门、香港的水位变化,除大连海平面上升速率降低外,其余均显示海平面上升速度逐年升高,和卫星高度计的结果吻合。  相似文献   

5.
高君  暴景阳  刘聚 《海洋测绘》2019,39(3):6-10
验潮站观测的海面高度数据是监测海平面变化以及确定平均海面时常使用的重要基础观测信息,针对平均海面以及相对海平面变化速率在不同时段观测资料下结果的差异进行了分析,统计了不同时间尺度平均海面确定的差异,并设计了两组数据实验,具体讨论了不同年份19年观测以及观测时长逐年累加两种情况下,相对海平面变化速率确定结果的规律。实验结果表明,月平均海面具有明显的季节性变化,最大互差可达几十厘米,1年平均海面基本稳定,19年平均海面精度可达厘米级;利用19年的观测资料确定的相对海平面变化速率反映的观测时段内海平面的变化情况,各时段结果差异较大且可靠性较低;为获得稳定可靠的相对海平面变化速率,观测时长应至少涵盖两个潮汐变化周期。  相似文献   

6.
海平面上升对中国沿海地区影响初析   总被引:2,自引:0,他引:2  
近五十年来中国沿岸海平面变化总的呈上升趋势,年变率平均为1.4mm/a,中国沿岸地形复杂,未来海平面上升可能影响的主要脆弱区为黄河、长江和珠江三大三角洲和滨海平原,其可能受害区域估计达35000km^2。影响中国沿岸相对海平面上升的主要因素有:近代地壳垂直运动和地面沉降,台风和风暴潮,海岸侵蚀和海咸水入侵等。  相似文献   

7.
近百年来,世界海平面上升了约12cm。我国海平面平均上升了14cm,东海沿岸为19cm,南海达20cm,1989年比1988年上升了1.45cm,比1975~1986年平均值上升了2.55cm(国家海洋局,1989)。在我国,海平面的上升将影响到从辽宁至海南省所有的海滨地带。温室效应对海南省气候的影响  相似文献   

8.
中国沿岸近期多年月平均海面随机动态分析   总被引:3,自引:1,他引:2  
田晖  陈宗镛 《海洋学报》1998,20(4):9-16
本文以最大熵谱分析了中国沿岸15个站1971~1995年月平均海面序列,得出中国沿岸月平均海面的主要振动为年振动和半年振动,而主要低频周期在中国北方各站为18.6a,从长途至厦门各站为9a左右.然后以随机动态拟合分析方法计算出中国沿岸月平均海面相对上升速率范围为(1.07±0.83)mm/a,并同时指出该方法计算出的上升速率受时段长度及低频周期的影响.最后,给出了中国沿岸月平均海面变异的时空分布,并说明了厄尔尼诺现象主要影响中国南部沿海的月均海面.  相似文献   

9.
1993—2012年中国海海平面上升趋势   总被引:1,自引:0,他引:1  
利用AVISO高度计数据计算了1993—2012年中国海海平面上升趋势,结果表明:(1)中国海平均海平面的上升速率为4.3mm/a,高于全球平均水平;渤、黄、东和南海的上升速率依次为3.1、2.9、3.0和4.6mm/a;渤黄东海平均为3.0mm/a;(2)首次同时计算了中国沿岸、中国海整体及中国海边界平均海平面的上升速率,分别为3.2、4.3、4.6mm/a;中国海边界的上升速率明显高于中国海沿岸及渤、黄和东海。初步认为:(1)渤、黄和东海及中国沿岸的平均海平面均与同期全球平均水平相当,而南海对整个中国海上升率贡献较大;(2)1993—2012年来中国海外围海域的上升可能是中国海上升的主导因素,建议在监测中国沿海海平面变化的同时,必须研究、监测相邻边界海域的海平面变化机制及变化趋势。  相似文献   

10.
提出了一种带周期项的海平面变化灰色分析模型.该模型保持了GM(1,1)模型能较好反应海平面变化趋势的优点,不仅能求出海平面变化速率,还能方便求出海平面变化的加速度,同时,该模型能较好的模拟海平面变化中的周期现象,从而克服了GM(1,1)不能预报周期性显著的月平均海面的缺点,并提高了预报精度.模型用于广西沿岸海平面变化分析,结果表明北海、涸洲、白龙尾3站的相对海平面上升速率分别为1.67、2.51、0.89mm/a;石头埠相对海平面呈下降趋势,下降速率为0.5~1.0mm/a;广西沿岸绝对海平面上升速率为2.0mm/a.和线性趋势项与周期项叠加的海平面分析模型相比,两者模拟精度相当.  相似文献   

11.
Spatial Variation of Sea Level Trend Along the Bangladesh Coast   总被引:1,自引:0,他引:1  
O. P. Singh 《Marine Geodesy》2002,25(3):205-212
The Bangladesh coast is threatened by rising sea level due to various factors. The results based on the analysis of past 22 years of tidal data of the Bangladesh coast reveal that the annual mean tidal level in the eastern Bangladesh coast is rising at an alarmingly high rate of 7.8 mm/year, which is almost twice the observed rate in the western region. This type of sea level trend seems to be the result of changing local conditions like increased precipitation and land subsidence during the recent decades. It seems that the higher rate of land subsidence in the eastern Bangladesh coast is the main causative factor for the steeper sea level trends there. The differential sea level trends show that the subsidence component in the sea level rise may be as high as 4 mm/year in the eastern Bangladesh coast. However, this needs to be verified with actual geological observations.  相似文献   

12.
O. P. Singh 《Marine Geodesy》2013,36(3):205-212
The Bangladesh coast is threatened by rising sea level due to various factors. The results based on the analysis of past 22 years of tidal data of the Bangladesh coast reveal that the annual mean tidal level in the eastern Bangladesh coast is rising at an alarmingly high rate of 7.8 mm/year, which is almost twice the observed rate in the western region. This type of sea level trend seems to be the result of changing local conditions like increased precipitation and land subsidence during the recent decades. It seems that the higher rate of land subsidence in the eastern Bangladesh coast is the main causative factor for the steeper sea level trends there. The differential sea level trends show that the subsidence component in the sea level rise may be as high as 4 mm/year in the eastern Bangladesh coast. However, this needs to be verified with actual geological observations.  相似文献   

13.
Based on long-term tide gauge observations in the last 60 years, the temporal and spatial variation characteristics of sea level change along the coast of China are analyzed. The results indicate that the sea level along the coast of China has been rising at an increasing rate, with an estimated acceleration of 0.07 mm/a2. The rise rates were 2.4 mm/a, 3.4 mm/a and 3.9 mm/a during 1960–2020, 1980–2020 and 1993–2020, respectively. In the last 40 years, the coastal sea level has risen fastest in the South China Sea and slowest in the Yellow Sea. Seasonal sea levels all show an upward trend but rise faster in winter and spring and slower in autumn. Sea level change along the coast of China has significant periodic oscillations of quasi-2 a, 4 a, 7 a, 11 a, quasi-19 a and 30–50 a, among which the 2–3 a, 11 a, and 30–50 a signals are most remarkable, and the amplitude is approximately 1–2 cm. The coastal sea level in the most recent decade reached its highest value in the last 60 years. The decadal sea level from 2010 to 2019 was approximately 133 mm higher than the average of 1960–1969. Empirical orthogonal function analysis indicates that China’s coastal sea level has been changing in a north-south anti-phase pattern, with Pingtan and Fujian as the demarcation areas. This difference was especially obvious during 1980–1983, 1995–1997 and 2011–2013. The coastal sea level was the highest in 2016, and this extreme sea level event was analyzed to be related mainly to the anomalous wind field and ENSO.  相似文献   

14.
The rise or fall trend of the sea level along the coast of East Asia is estimated with different computational methods based on sea‐level data of longer time series collected from 45 tide gauge stations there. The results show that the relative sea level, on average, has been rising along the coast of the whole of East Asia from the early 1950s to the early 1990s. The regional change of sea‐level rise or fall is greater. The sea level along the coast of China, except along the Shandong Peninsula, is rising; the sea level along the coast of the southern islands of Japan and the southern Korean peninsula, as estimated by several methods, is mostly rising, but the rate of rise is very small. The difference between the results estimated in this study and the corresponding results of Barnett along the coast of East Asia is significant. This is mainly because the number of the stations selected by Barnett is relatively small, and the selected stations are concentrated at the southern and northern ends of the region, without data in the middle of the region. The effect of the estimating methods is smaller.  相似文献   

15.
利用南海周边1989-2014年的潮汐资料和GPS长期观测资料,分析了南海周边相对海平面变化特征,以及2004年苏门答腊地震对该区域相对海平面变化的影响。研究结果表明,南海周边的相对海平面变化以上升为主,平均上升速率(4.53±0.20) mm/a,高于全球平均速率,且2004年后上升趋势加剧;南海周边相对海平面呈现6类较典型的变化特征,并存在与板块构造相对应的分区聚集现象,形成了中国东南和越南沿海、马来半岛、加里曼丹岛北部、菲律宾群岛等4个变化特征区。受2004年苏门答腊大地震的影响,马来半岛、南沙和西沙海域的地壳形变由上升趋势转为下沉,加剧了相对海平面的上升;中国东南沿海和菲律宾群岛受地震影响较小;越南沿海和加里曼丹岛北部区域的地震影响还有待进一步研究。  相似文献   

16.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

17.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

18.
根据东亚沿岸45个水位观测站的长序列水位资料,用不同的计算区域平均海平面升降的方法,估计了该区海平面升降趋势。结果表明,从本世纪50年代初至90年代初,整个海区平均而言海平面呈上升趋势。海平面升降的区域性变化较大:中国沿岸除山东半岛外,其他海区平均是上升的,在日本群岛南部和朝鲜半岛南部沿岸,由几种方法得出的结果多数是上升的,但上升幅度很小。本文对东亚沿岸海平面升降的估计结果与Barnett的相应估计差别较大,其主要原因是Barnett选站较少,且选的站集中在该区南北两端,中间部分无资料;估计方法虽有影响,但属次要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号