首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   

2.
内蒙古头道桥地区出露了一套经高压变质形成的岩石组合。本次研究通过岩相学和矿物化学分析,根据矿物组合的不同,识别出蓝片岩、绿片岩两种不同类型的岩石类型。其中,蓝片岩的矿物组合为角闪石(蓝闪石、蓝透闪石)+绿帘石+钠长石+绿泥石+石英+赤铁矿±多硅白云母±方解石±榍石;绿片岩的矿物组合为绿泥石+钠长石+石英±绿帘石±角闪石(阳起石、镁角闪石、蓝透闪石、冻蓝闪石等)±多硅白云母±赤铁矿。确定了蓝片岩的峰期变质级别为绿帘-蓝闪片岩相,峰期变质温度为400~600℃,压力为1.2~1.4 GPa。绿片岩的峰期变质级别为绿帘-角闪岩相。结合前人研究成果,认为蓝片岩和绿片岩的形成与额尔古纳地块和兴安地块的碰撞拼合有关。  相似文献   

3.
Very small amounts of prehnite and pumpellyite have been found, often as lenses in biotite crystals, in otherwise quite ordinary quartzo-feldspathic gneisses and granitoid rocks forming common components of the Precambrian basement of S Sweden. It is concluded that both minerals belong to the same metamorphic paragenesis, which also includes quartz, K-feldspar, albite, epidote, colourless mica and chlorite. The presence of this paragenesis, in however slight amounts, signifies that the rocks bear the imprint of a phase of metamorphism belonging to the prehnite-pumpellyite facies.  相似文献   

4.
A stratigraphically coherent blueschist terrane near Aksu in northwestern China is unconformably overlain by unmetamorphosed sedimentary rocks of Sinian age (~600 to 800 Ma). The pre-Sinian metamorphic rocks, termed the Aksu Group, were derived from shales, sandstones, basaltic volcanic rocks, and minor cherty sediments. They have undergone multi-stage deformation and transitional blueschist/greenschist-facies metamorphism, and consist of strongly foliated chlorite-stilpnomelane-graphite schist, stilpnomelane-phengite psammitic schist, greenschist, blueschist, and minor quartzite, metachert, and meta-ironstone. Metamorphic minerals of basaltic blueschists include crossitic amphibole, epidote, chlorite, albite, quartz, and actinolite. Mineral parageneses and compositions of sodic amphibole suggest blueschist facies recrystallization at about 4 to 6 kbar and 300 to 400° C. Many thin diabasic dikes cut the Aksu Group; they are characterized by high alkali, TiO2, and P2O5 contents and possess geochemical characteristics of within-plate basalts; some of these diabasic rocks contain sodic clinopyroxene and amphibole as primary phases and have minor pumpellyite, albite, epidote, chlorite, and calcite as the prehnite/pumpellyite-facies metamorphic assemblage. This prehnite/pumpellyite-facies overprint did not affect the host rocks of the blueschist-facies lithologies.

K-Ar and Rb-Sr ages of phengite and whole rocks from pelitic schists are ~690 to 728 Ma, and a 40Ar/39Ar age of crossite from the blueschist is 754 Ma. The basal conglomerate of the overlying Sinian to Eocambrian sedimentary succession contains clasts of both the blueschist and cross-cutting dike rocks, clearly demonstrating that conditions required for blueschist-facies metamorphism were attained and ceased at least 700 Ma. The northward-increasing metamorphic grade of the small blueschist terrane may reflect northward subduction of an accretionary complex beyond the northern edge of the Tarim craton. Abundant subparallel diabasic dikes indicate a subsequent period of Pre-Sinian rifting and diabasic intrusion along the northern margin of Tarim; a Sinian siliciclastic and carbonate sequence was deposited unconformably atop the Aksu Group and associated diabase dikes.  相似文献   

5.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

6.
Petrogenesis of Eclogites in the Light of PunctuatedMetamorphic Evolution in Dabie Terrane,China¥YouZhendong;HanYujing;ZhongZ...  相似文献   

7.
大别山产出的榴辉岩相岩石包括石榴橄榄岩、榴辉岩、榴云片岩、榴辉片麻岩、榴玉英岩和榴辉大理岩等不同系列,它们均分布于花岗质片麻岩中。矿物共生序列研究表明,榴辉岩相岩石经历了从绿帘角闪岩相、柯石英榴辉岩相、角闪榴辉岩相、绿帘角闪岩相到绿片岩相的演化过程。花岗质片麻岩及变质火山—沉积岩系并未经历超高压变质作用,但却与榴辉岩相岩石经历了同一期绿帘角闪岩相变质事件,证明二者在地壳范围内发生了构造合并  相似文献   

8.
Mariupolite, aegirine-albite nepheline syenite, outcropping only in the Oktiabrski massif in south-eastern Ukraine, is a potential resource of Nb, Zr and REE for future exploration and development. Some types of this rock can be also used in ceramics, glass and building industry and jewellery. Mariupolite is composed of (1) magmatic and (2) subsolidus and hydrothermal components. The magmatic assemblage includes zircon, aegirine, nepheline, albite, K-feldspar, pyrochlore, fluorapatite, fluorbritholite-(Ce) and magnetite. Alkaline-carbonate-chloride-rich fluids exsolved very early in the history of the rock, in a late stage of, or directly after, its consolidation, induced intensive high-temperature alteration of the primary mariupolite components resulted in formation of cancrinite, calcite, fluorite, REE-bearing minerals such as monazite, parasite-(Ce), bastnäsite-(Ce), as well as sodalite, natrolite and hematite. The genesis of this peculiar mineralization seems to be associated with multistage magmatic and tectonic activity of the Ukrainian Shield and fluids mediated metasomatic processes.  相似文献   

9.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

10.
Microcrystals (1–15 μm) of unusual monazite (La) with 41–47 mol% cheralite [ThCa(PO4)2] component and a strong negative Ce anomaly are described from a metadiorite from the SW Slavonian Mountains, Psunj, Croatia. The dioritic host rock still shows a relictic igneous fabric on macroscopic scale. However, metamorphic reaction textures can be recognized in thin section. These include partial recrystallization of igneous plagioclase to albite coupled with the formation of epidote. Furthermore, partial replacement of igneous hornblende by a fine-grained orthoamphibole-chamosite-epidote paragenesis can be observed and replacement of ilmenite by titanite. The compositions of the metamorphic minerals indicate upper greenschist facies conditions (460–500 °C according to two-feldspar geothermometry) under a high oxygen fugacity. Microstructures show that the monazite crystals belong to the metamorphic paragenesis and formed at the expense of magmatic allanite. Their negative Ce anomalies reflect the oxidizing conditions of metamorphism. Application of the xenotime in monazite solvus geothermometer provides unrealistically high temperatures of ~500–660 °C which disagree with the greenschist facies metamorphic paragenesis. We interpret that the presence of cheralite has a profound effect on the nature of the monazite-xenotime solvus curve and hence the existing calibrations of this geothermometer may be generally unsuitable for cheralite-rich monazite. An important geological result is that the Th-U-total Pb ages of the monazite grains are uniformingly Upper Cretaceous. Our data thus suggest that the imprint of the Alpine orogeny on the Slavonian Mountains was stronger than presumed until now.  相似文献   

11.
Abstract The Bikou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist facies. Three metamorphic zones, i.e. zones A, B, and C, may be distinguished on the basis of the field distribution of metamorphic rocks and the variation of b0 values of muscovite. Blueschists are characterized by coexistence of sodic amphiboles and epidote and occur as stripes or relict patches in extensive greenschists of zone A. Studies of metamorphic minerals such as amphiboles, chlorite, epidote and muscovite and their textural relationships indicate that blueschists and greenschists were not formed under the same metamorphic physico-chemical conditions. The blueschist facies was formed at temperatures of 300-400°C and pressures of 0.5–0.6 GPa. The greenschist facies in zones A and B has similar temperatures but its pressure is only 0.4 GPa or so. The transition from the blueschist to greenschist facies is a nearly isothermal uplift process. The rock and mineral assemblages of the Bikou Group indicate that the blueschist facies metamorphism of the group might be related to crustal thickening or A-subduction accompanying the closure of an intracontinental small ocean basin.  相似文献   

12.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

13.
新疆拜城县波孜果尔A型花岗岩类为富含铌、钽、锆等有用元素的含矿岩体。通过偏光显微镜、电子探针(EPMA)化学成分分析、电子探针背散射(BSE)对波孜果尔A型花岗岩类的矿物学特征进行了研究,并对岩浆形成的温度条件与构造背景进行了讨论。结果表明,波孜果尔A型花岗岩类包括霓石钠闪石英碱性长石正长岩、霓石钠闪碱性长石花岗岩、黑云母碱性长石正长岩3种岩石类型。主要造岩矿物包括石英、钠长石、钾长石、霓石、钠铁闪石和铁叶云母。副矿物包括锆石、烧绿石、钍石、萤石、独居石、氟碳铈镧矿、磷钇矿等。岩浆平均温度832~839℃,形成于非造山的板内构造环境,且具高温、无水、低氧逸度的成岩特点。  相似文献   

14.
An Early Palaeozoic (Ordovician ?) metamudstone sequence near Wojcieszow, Kaczawa Mts, Western Sudetes, Poland, contains numerous metabasite sills, up to 50 m thick. These subvolcanic rocks are of within-plate alkali basalt type. Primary igneous phases in the metabasites, clinopyroxene (salite) and kaersutite, are veined and partly replaced by complex metamorphic mineral assemblages. Particularly, the kaersutite is corroded and rimmed by zoned sodic, sodic–calcic and calcic amphiboles. The matrix is composed of actinolite, pycnochlorite, albite (An ≤ 0.5%), epidote (Ps 27–33), titanite, calcite, opaques and, occasionally, biotite, phengite and stilpnomelane. The sodic amphiboles are glaucophane to crossite in composition with NaB from 1.9 to 1.6. They are rimmed successively by sodic–calcic and calcic amphiboles with compositions ranging from magnesioferri-winchite to actinolite. No compositions between NaB= 0.92 and NaB= 1.56 have been ascertained. The textures may be interpreted as representing a greenschist facies overprint on an earlier blueschist (or blueschist–greenschist transitional) assemblage. The presence of glaucophane and no traces of a jadeitic pyroxene + quartz association indicate pressures between 6 and 12 kbar during the high-pressure episode. Temperature is difficult to assess in this metamorphic event. The replacement of glaucophane by actinolite + chlorite + albite, with associated epidote, allows restriction of the upper pressure limit of the greenschist recrystallization to <8 kbar, between 350 and 450°C. The mineral assemblage representing the greenschist episode suggests the P–T conditions of the high-pressure part of the chlorite or lower biotite zone. The latest metamorphic recrystallization, under the greenschist facies, may have taken place in the Viséan.  相似文献   

15.
Abstract The Hercynian granitic basement which forms the Tenda Massif in NE Corsica represents part of the leading edge of the European Plate during middle-to-late Cretaceous (Eoalpine) high P metamorphism. The metamorphism of this basement, induced by the overthrusting of a blueschist facies (schistes lustrés) nappe, was confined to a major ductile shear zone (c. 1000m thick) within which deformation increases upwards towards the overlying nappe. Metamorphism within the basement mostly records lower blueschist facies conditions (crossite + epidote) except near the base of the shear zone where the greenschist facies assemblage albite + actinolitic amphibole has developed instead of crossite. Study of the primary mafic phase breakdown reactions within hornblende granodiorite reveals the following metamorphic zonation. Zone 1: biotite to chlorite. Towards zone 2: biotite to phengite. Zone 2: Hornblende to actinolitic Ca-amphibole + albite + sphene, and biotite to actinolitic Ca-amphibole + albite + phengite + Ti-ore + epidote. Zone 3: Hornblende to crossite + low Ti-biotite + phengite + sphene, and biotite to crossite + low Ti-biotite + phengite + Ti-ore + sphene ± epidote. P-T conditions at the base of the shear zone are estimated to have been 390-490°C at 600-900 M Pa (6-9kbar) and the Corsican basement is therefore deduced to have been buried to 20-30 km during metamorphism. This relatively shallow metamorphism contrasts with some other areas in the Western Alps where the Eoalpine event apparently buried the European continental crust to depths of 80 km or more. As there is no evidence for a long history of blueschist facies metamorphism prior to the involvement of the European continent, it is deduced that the Eoalpine blueschists were produced during the collision of the Insubric plate with Europe, rather than during Tethyan intraoceanic subduction. Coherent blueschist terrains such as the schistes lustres probably record buovant feature collision and obduction tectonics rather than any preceding oceanic subduction.  相似文献   

16.
COOPER  A. F. 《Journal of Petrology》1972,13(3):457-492
Progressive mineralogical changes are described for metabasicrocks through a Barrovian-type metamorphic series ranging fromgreenschist to amphibolite facies in the Southern Alps of NewZealand. Wet chemical and electronmicroprobe analyses of coexisting phasesillustrate (a) that chlorite composition becomes progressivelymore Mg-rich towards higher grades. Chlorite and biotite zonechlorites have Mg/Fe <1.00, while in the oligoclase zonethe chlorite Mg/Fe >2.00. (b) Biotite and epidote compositionsshow no systematic variation with metamorphic grade and arecontrolled by bulk rock composition. For epidote, compositionis directly related to oxidation states during metamorphism.(c) Zoning profiles from atoll and normal porphyroblastic almandine-richgarnets are illustrated, and their relationship to compositionalchanges with metamorphic grade discussed, (d) Coexisting compositionsof albite and oligoclase through the garnet zone outline theform of the peristerite solvus. Myrmekitic textures in oligoclaseare ascribed to release of silica during progressive eliminationof albite. Element distribution between coexisting minerals is graphicallyinvestigated. Isogradic samples show very similar element distributions,suggesting general equilibration. Distribution of any elementbetween two phases for the facies series as a whole, however,is clearly influenced by changing concentrations of other ionsin one or both minerals. In particular for pairs containingcalciferous amphibole, the distribution coefficient is dependentupon tetrahedrally co-ordinated Al+3 of the amphibole.  相似文献   

17.
本文从岩石及矿物的变质—变形关系和化学成分研究证明,龙江岩系①中蓝片岩与绿片岩的共存不是单一变质事件的产物,而是构造变动和不连续变质作用叠加的结果。早期蓝片岩形成在一种高压低温,高氧逸度环境。后经构造变动,转变为地热梯度较高的变形环境中,遭受韧性变形和以增温为主的绿片岩相变质作用的叠加。其间,钠质闪石向钠钙质闪石的转变,代表一种不连续的增温事件,而钠钙质闪石向钙质闪石的转变反映一种连续的增温过程。  相似文献   

18.
吉林南部地区老岭群变质矿物较为发育,本文通过对其中发育的变质矿物进行详细鉴定和大量探针分析,将老岭群下亚群主要变质矿物划分为两个世代,分别代表两期变质作用M1和M2.结合研究区老岭群变质矿物组合、分布特征以及变质相带的研究,认为M1为中-低温区域动力热流变质作用,可以划分为低绿片岩相和高绿片岩相,而M2为局部热变质作用...  相似文献   

19.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

20.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号