首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Río Fardes剖面位于西班牙南部Granada东北,构造上属于深水环境的Subbetic中带。该剖面主要由白垩纪Fardes组第Ⅱ段和第Ⅲ段(半)远洋沉积构成,并出现浊流沉积和混杂沉积。本次研究在Fardes组浊流层序内首次发现两段红色沉积。钙质超微化石表明红层的时间从Turonian早期(UC7 带)到Coniacian中期—晚期界线(UC10/?UC11带)。红层由mm级红色泥岩夹灰色、杂色、偶尔黑色泥岩和钙质泥岩组成。沉积学研究表明新发现的Turonian Coniacian远洋红色泥岩沉积形成于CCD面之下深水盆地环境,浊流和碎屑流沉积强烈地影响着(半)远洋环境的背景泥岩相,并成为红色沉积结束的原因。  相似文献   

2.
Most of the Quaternary sediments of the Mozambique Fan have been derived from Africa-Madagascar and deposited by turbidity currents in Pleistocene time. Currents caused by movement of the Antarctic Bottom Water also played a significant role in reworking and redepositing sediments along the marginal areas of the fan. The inner or upper Mozambique Fan is characterized by a single, leveed valley. Due to the effects of the Coriolis force, the natural levees to the east of the valley (left, looking downstream) are higher and contain more terrigenous sediments than those to the west of the valley. The sea floor to the west of the valley returns regular hyperbolic echoes as seen on 3·5 kHz echograms, whereas to the east of the valley, the sea floor is relatively smooth. The sediments on the valley floor are coarse-grained (with median grain up to 2 mm) and poorly sorted, and occur often as massive turbidites, interbedded with hemipelagic sediments. Away from the valley, both to the east and the west, the terrigenous sediments are relatively fine-grained and have been deposited as overbank turbidite sequences. We estimate the maximum velocities of the channelized turbidity currents in the upper fan to have been 8–32 ms?1. The middle fan has several distributary channels with no levees and has a relatively flat sea floor, characterized by lack of acoustic penetration. Thick, sheet-like, turbidite sand beds, deposited primarily by unchannelized turbidity currents, characterize the middle fan. The middle fan grades, towards the margins, into the outer (lower) fan which is relatively free of channels, has good acoustic penetration and contains hemipelagic and pelagic sediments, and thin, fine-sand turbidite and/or contourite beds. A wide zone of sediment waves, formed from the reworking of the turbidity current-fed sediments by the Antarctic Bottom Water, forms part of the outer fan.  相似文献   

3.
The Cow Head Group is an Early Palaeozoic base-of-slope sediment apron composed of carbonate and shale. Whereas coarse-grained conglomerate and calcarenite are readily interpreted as debris-flow and turbidite deposits, calcilutite (lime mudstone), calcisiltite, and shale combine to form three distinct lithofacies whose present attributes are a function of both sedimentation and early diagenesis. Shale is the most common lithology. Black, green, and red shale colour variations reflect the abundance of organic matter in the source area and oxygenation conditions of the sea bottom. In black and green shale, millimetre- to centimetre-thick, alternating dark and light laminations represent terrigenous mud turbidites and hemipelagites, respectively. The calcisiltite/shale facies is uncommon and is composed of numerous graded carbonate-shale sequences (GCSS) deposited from waning carbonate turbidites and fall-out of terrigenous muds. Some of the characteristics of ribbon and parted lime mudstones in the calcilutite/shale facies can be explained by deposition of carbonate mud from dilute turbidity currents or hemipelagic settling. Other features are diagenetic in origin. The lack of micrite in GCSS and in the interbedded shales of the calcilutite/shale facies is interpreted to reflect early dissolution of the finer carbonate from these sediments. This remobilized carbonate was precipitated locally to: lithify lime mudstone turbidites or hemipelagites; form diagenetic lime mudstone beds and nodules; cement calcisiltites; and form dolomite. Many of the calcisiltites and calcilutites were, therefore, carbonate enriched at the expense of adjacent argillaceous sediments. These attributes characterize not only fine-grained sediments of the Cow Head Group but many other Early Palaeozoic slope carbonates as well, suggesting that the model proposed here for depositionl diagenesis has wider application.  相似文献   

4.
Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates. The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs. After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.  相似文献   

5.
The influence of astronomically driven short‐term climate change (Milankovitch cycles) on deep‐marine turbidite systems is not well‐known, particularly in the case of long‐term greenhouse intervals with no significant glacio‐eustatic sea‐level fluctuations. This study, carried out at the Gorrondatxe section (Global Stratotype Section and Point for the base of the Lutetian Stage in the western Pyrenees), demonstrates that the characteristics of lower–middle Eocene fan‐fringe/basin‐plain turbiditic and pelagic deposits varied in line with orbitally forced fluctuations in seasonal rainfall, runoff and terrigenous input to the sea. Reduced turbiditic activity during the formation of pelagic limy precessional hemicouplets indicates subdued seasonality and low terrigenous input. Conversely, turbidity currents were more frequent, had greater energy and were more voluminous during the formation of pelagic marly hemicouplets, suggesting precessional hemicycles with strong seasonality and heavy summer rainfall. These differences at precessional time scales were enhanced at maximum eccentricity because turbiditic activity was most intense when boreal summer occurred at perihelion (i.e. maximum seasonality) but declined when it occurred at aphelion. At minimum eccentricity, with relatively weak seasonality throughout one (or more than one) precessional cycle (>21 kyr), turbiditic activity remained relatively low. The pattern observed at the Gorrondatxe fan‐fringe/basin‐plain succession implies that the orbitally forced environmental changes must also have affected the inner and middle parts of the submarine fan. The astronomical influence on terrigenous sediment input also determined the changing characteristics of the pelagic sedimentation. Thus, terrigenous sediment contribution to pelagic sedimentation fluctuated by a factor of five during opposite precessional situations at maximum eccentricity, whereas there was almost no fluctuation at minimum eccentricity.  相似文献   

6.
济阳坳陷牛庄洼陷沙三段三角洲前缘浊积岩特征   总被引:13,自引:0,他引:13  
根据地质、测井、地震资料的综合分析,对济阳坳陷牛庄洼陷沙河街组三段三角洲前缘的浊积岩特征进行了研究。结果表明,该区存在砂质浊积岩体和细粒浊积岩体两种浊流沉积物。其中砂质浊积岩体粒度较细、结构成熟度和成分成熟度较低,结构和构造均反映了砂体具有滑塌再沉积的特点,可用Bouma序列来描述,常发育CDE,BCD,ABCD型浊流组合。砂质浊积岩体可进一步划为有根式和无根式两类。有根式砂体常呈扇形,可分为内扇槽道、中扇辫状水道、水道间、水道前缘和外扇无水道五种微相;无根式砂体常呈片状、舌状,可分为中心微相和边缘微相两个相带。细粒浊积岩属于低密度流的产物,不能用Bouma序列来解释,主要发育递变纹层泥岩和不均匀的块状泥岩两种细粒浊积岩。根据两类沉积物的沉积特征,建立了该区三角洲一浊积岩体综合沉积模式。论述了三角洲前缘浊积岩的成因及石油地质意义。  相似文献   

7.
梁传茂 Fred.  GM 《现代地质》1992,6(4):426-430
作者认为北美阿巴拉契亚地区和我国贺兰山地区奥陶系的一套碳酸盐砾岩层序,就是低海平面时期的一种特殊沉积岩相。这种岩相不仅是古海洋条件变化的一种标志,而且也是良好的油气储集层。文中主要从沉积学的角度解释了它们的形成机制。  相似文献   

8.
A piston core from the basinal part (depth of 5188 m) of the South Shetland Trench (West Antarctica) yielded a terrigenous mud section 11 m long, which can be subdivided with great precision into turbidite and hemipelagite layers. Mud turbidites (mean bed thickness = 44 cm) alternate regularly with, and are best distinguishable from, their hemipelagite host (mean bed thickness = 17 cm) by the following features: (i) sharp basal contacts; (ii) terrigenous sand-free textures (except basal, well-sorted silt laminae) and the absence of outsized (ice-rafted) components; (iii) a laminated, little to non-bioturbated internal structure; (iv) distinct textural and compositional grading; and (v) marked steps on water-content and sediment-density logs. Mud turbidites recovered from the South Shetland Trench differ from an earlier model mud-turbidite sequence by their: (i) excessive (about six times larger) bed thickness; (ii) complex internal organization, manifested in multiple repetitions (up to four) of the same structural interval(s) in sequential or nonsequential order; (iii) distinctive very fine-grained cap of highly porous clay, rich in fragments of siliceous biogenics; (iv) widespread zones of penesyndepositional deformation; and (v) evidence of flow reversals. These features are interpreted to record deposition from large, muddy turbidity currents subjected to flow transformations, including soliton- and/or seiche-related reversals, induced by ponding and interactions of the flow with the topographical confinements of the trench. It is concluded that‘contained’muddy turbidites cannot be adequately modelled using published sequences. Differentiation of single-model and‘contained’mud turbidites offers obvious advantages in basin analysis and in understanding the plethora of turbidity current-related depositional mechanisms of deep-sea mud.  相似文献   

9.
At many North Atlantic continental margins, the early Neocomian is characterized by a major stratigraphic turning point from Late Jurassic-Berriasian carbonate bank/pelagic carbonate deposition to Valanginian-Barremian hemipelagic sedimentation with thick Wealden-type deltaic to deep-sea fan sequences. The stratigraphy and structure of the very old, starved passive margin of the Mazagan Plateau and adjacent steep escarpment off Morocco was studied during the French-German CYAMAZ deep diving campaign. The drowning of the Late Jurassic-early Berriasian carbonate platform was strongly influenced by a global late Berriasian sea level fall which was followed by a rapid late Valanginian sea level rise and/or by a major regional blockfaul ting event with accelerated subsidence rates. Upper Berriasian to (?) Hauterivian quartz-bearing bioclastic wackestones document the transition from the carbonate platform to the hemipelagic deposition on the drowned platform margin. Seawards, these deposits are correlated with a deep sea fan sequence. We discuss also an example from the Tarfaya Basin-Fuerteventura area further south. A 300 m thick succession of organic-rich claystone and sandstone turbidites (including m-thick debris flow units) of Hauterivian to Barremian age was an unexpected discovery at DSDP Site 603 off North Carolina (Leg 93). We discuss a tectonically confined fan model with laterally migrating channels, influenced by sea level fluctuations and varying terrigenous supply. During the Valanginian to Barremian time of high-standing (or rising) sea level, shelf construction (Wealden-type deltas) coincided with subdued, resedimentation-starved turbiditic system on the continental rise. Extensive unconsolidated sands, however, reflect sudden input of shelfal material into the basin during a mid-Aptian sea level lowstand (shelf destruction). The following global late Aptian transgression terminated the clastic fan deposition, raised the CCD and started the deposition of organic-rich shales.  相似文献   

10.
In the Bavarian Alps (Germany), west of the Isar River, the abyssal deposits of the Lower Barremian to Upper Campanian Rhenodanubian Group consist of siliciclastic and calcareous turbidites alternating with hemipelagic non-calcareous mudstones. The up to 1500-m-thick succession, deposited in the Penninic Basin to the south of the European Plate, is characterized by a low mean sedimentation rate (c. 25 mm kyr−1) over 60 million years. Palaeocurrents and turbidite facies distribution patterns suggest that sedimentation occurred on a weakly inclined abyssal plain. The highest sedimentation rates (up to 240 mm kyr−1) were associated with the calcareous mud turbidites of the newly defined Röthenbach Subgroup, which includes the Piesenkopf, Kalkgraben and Hällritz formations (Middle Coniacian to Middle Campanian). These calcareous turbidites prograded from the west, and interfinger towards the east with red hemipelagic claystone. A high sea level presumably favoured pelagic carbonate production and accumulation on the shelves and on internal platforms in the western part of the basin, whereas siliciclastic shelves with steep slope angles have bordered the eastern part of the basin, where a dearth of turbidite sedimentation and increased Cretaceous oceanic red beds deposition occurred. In contrast to the eustatically-induced Middle Coniacian to Lower Campanian Cretaceous oceanic red beds (calcareous nannoplankton zones CC14 to CC18), red hemipelagites of Early Cenomanian age (upper part of calcareous nannoplankton zone CC9) and early Late Campanian age (upper part of zone CC21 and zone CC22) are interpreted as the result of regional tectonic activity.  相似文献   

11.
The early Holocene S-1 sapropelic sequence in the northwest Hellenic Trench has been studied in six piston cores from the Zakinthos and Strofadhes basins. The S-1 sequence, 0.7-3.5 m thick, consists principally of silt to mud turbidites, with rare, thick, disorganized, sandy turbidites. These lithofacies are described and compared with fine-grained turbidites from the literature. Petrographical data, including the abundance of organic carbon and planktonic microfossils, indicate that the principal source of sediment to the turbidites was from the continental slope. On the basis of composition and texture, five turbidite units can be correlated between the two basins. These basins are fed by separate but adjacent drainage systems. The apparently synchronous occurrence of turbidites in the two drainage systems suggests that the turbidity currents were seismically triggered. Some of the turbidites show poorly organized beds which may reflect the slump origin and the short (30 km) distances of travel. Turbidites were deposited more frequently in the S-1 sapropelic interval than in the over- and underlying sediments. Application of slope stability analysis shows that on the 8° slopes above the basins, a 10-cm-thick sapropel would have a factor of safety of about 2, and would fail with earthquake accelerations in excess of 0.08 g. The frequency of earthquakes likely to produce such accelerations is similar to the observed frequency of turbidites. The low strength of the sapropelic sediment makes it particularly susceptible to such failure. Similar thin-skinned slumping may be an important process for the initiation of turbidity currents in other environments where there are steep slopes or high sedimentation rates.  相似文献   

12.
塔里木盆地中-上奥陶统浊积岩物源分析及大地构造意义   总被引:3,自引:0,他引:3  
通过地表露头及钻井取心的浊积岩沉积特征观察及古流向分析、砂岩主量元素化学成分分析及地震相分析,提出塔里木盆地奥陶系陆源碎屑浊积岩主要发育于塔东地区及塘古兹巴斯坳陷的上奥陶统之中,其浊流沉积物源主要来自盆地东南侧的阿尔金岛弧、其次来自盆地西南侧的库地活动陆缘隆起;仅盆地东北缘却尔却克山地区出露的中奥陶统顶部的却尔却克组下部陆源碎屑浊积岩的物源区,主要来自其北侧的库鲁克塔格被动陆缘隆起(台地隆起剥蚀区)。综合分析认为,晚奥陶世发生于板块南缘的阿尔金岛弧及库地活动陆缘隆起与塔里木板块的碰撞挤压运动产生的大量陆源碎屑物源,导致了板块内部多个孤立碳酸盐台地的逐步消亡及板块南部浊流盆地群的形成。  相似文献   

13.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

14.
The paper describes the palynology, stratigraphy, sedimentology and palaeogeographic setting of Lower Cretaceous turbiditic and terrigenous deep-sea sediments at the Tethyan margins of Africa and Alboran (External Domain of the Rif, and Flysch Nappes). During the Early Cretaceous terrigenous turbiditic deep-water sedimentation characterizes two different palaeogeographic domains in the southern part of the western Tethys:
  • In the northern area of the External Domain (Ketama Unit of the Rif) alternating turbiditic arenites and pelites are interpreted as sediments of a distal part of a fan system on the Tethyan margin of Africa. The main sources for the terrigenous material were situated in Central and Western Algeria; only little sand transited through the Prerif and the Mesorif zones of Morocco. The terrigenous sedimentation began in the Hauterivian, but the main turbiditic cycles are of Aptian to Lower and Middle Albian age.
  • The Flysch Domain probably was situated far to the Northeast with respect to the Rif basin, at the western and southern margins of the Alboran microplate. Relatively proximal turbidites form most of the Tisirène Nappe, whereas more distal turbidites constitute the series of the Melloussa and the Chouamat Nappes. The existence of two different source areas is demonstrated, one to the NE and the other to the NW of the depositional area. The turbidites probably were deposited on a E-W oriented fan system which progradated into a longitudinal trench-like trough. In the Central Rif area, the Tisirène Flysch is of Valanginian to Albian (pre-Vraconian) age. In the Western Rif and in the Melloussa and Chouamat Nappes of the whole area no sediments older than Aptian have been found.
  • The stratigraphy of the investigated series is based on a new tentative palynostratigraphic zonation, using pollen, spores and dinoflagellate cysts. Rich and well preserved assemblages have been found in the Western Rif only, whereas the samples of the Tisirène Nappe and the Chouamat Nappe in the Central and Eastern Rif have been affected by some thermal alteration. Black and mostly opaque palynomorphs from the Ketama Unit reflect the strong thermal influence in the External Domain of the Central and Eastern Rif.  相似文献   

    15.
    A piston core from the southern Blake Basin penetrated nine distinct bioclastic carbonate turbidites separated by pelagic terrigenous clay units. X-ray diffraction analysis of the carbonate mineralogy of the graded, laminated, and homogenous units of the individual turbidite units indicated a general loss of unstable carbonates in the homogenous unit beyond that contained in the lower two units. Univariate and multivariate statistical tests were employed to determine the significance of the changes and to determine if different units of a turbidite sequence could be consistently grouped by statistical methods. Principal components, discriminant function, and cluster analysis were used in the multivariate tests. The graded and laminated units were closely related in mineralogy with little significant differences. The mineralogy of the homogenous units was significantly different than that of the other two units except in one example. Cluster analysis generated five groupings of the samples with the end members consisting of graded and laminated units at one end and homogenous units at the other.  相似文献   

    16.
    REINHARD HESSE 《Sedimentology》1987,34(6):1055-1077
    In the diagenetic history of calcareous sandstones, silicacementation and silicification may be followed by carbonatecementation and replacement and vice versa, and the change-over from one to the other may occur more than once. This is well illustrated by calcareous and siliciclastic turbidites of the Gault Formation (Aptian to Albian) of the Eastern Alps which have been interpreted as deep-sea trench plain and deep-sea fan deposits. In these turbidites silicification selectively affects ooids and a few other biogenic carbonate fragments rich in organic matter (algae and bryozoans) which form a small fraction of the bulk sediment. The type and sequence of diagenetic changes are largely controlled by host-rock composition and may vary vertically within individual beds as a result of compositional grading. In the carbonate turbidites, silicification follows widespread calcite cementation. The process is slow, resulting in relatively coarsely crystalline replacement quartz. In ooids with quartz nuclei, rim-quartz forms mostly monocrystalline ‘overgrowths’ by outward replacement of the concentrically laminated carbonate cortex. This type of silicification is often incomplete leaving parts of the ooid cortices unaffected. In quartz arenites and sublitharenites silicification precedes calcite cementation. There the process is rapid, forming microcrystalline quartz. Even if the ooid nucleus consists of quartz, a syntaxial ‘overgrowth’ does not normally form. The replacement quartz is almost always polycrystalline. Late-stage diagenetic calcite and dolomite which develop euhedral crystal shapes and cut across grain boundaries may replace the earlier secondary rim-quartz of the ooids as well as other minerals. Possible sources of the silica are pressure-solution of quartz, dissolution of opaline silica of radiolarian tests and of sponge spicules, and feldspar in the host bed. In a number of examples an increase in the degree of silicification can be observed towards the lower bedding planes of individual turbidites requiring an additional external source of silica which seems to necessitate cross-formational flow of pore solutions. Silicification in both the carbonate and the siliciclastic turbidites probably took place at about the same time; in the carbonate turbidites it was preceded, however, by calcite cementation, which significantly reduced porosity and permeability before silicification took place. The greater degree of alteration experienced by the Gault turbidites of the Falknis and Tasna Nappes, which are more internal structural units of the Alps (compared to the Flysch Zone of the Eastern Alps), is reflected by the growth of quartz ‘beards’ and spikes from the ooids in the direction perpendicular to maximum stress. This is the only case observed where the rim quartz of the ooids grows beyond the original grain boundaries.  相似文献   

    17.
    南盘江印支期前陆盆地中上三叠统深水浊积岩沉积特征   总被引:1,自引:0,他引:1  
    南盘江印支期前陆盆地,于中晚三叠世发育了一套厚度较大,分布广泛的陆屑浊积岩。按照沉积结构,构造和岩性特征,可划分出四种浊积岩相类型。其沉积模式为海底扇,并具三个幕次的沉积活动,其物源来自盆地南端,即为印支板块与扬子板块碰撞形成的前陆褶冲带。经研究,百蓬期(T21)浊积盆地位于CCD面之下,而河口期(T22)和法郎期(T13)烛积盆地位于CCD面之上。  相似文献   

    18.
    Flysch sequences develop normally from pelagic sediments, over a pre-flysch transitional unit, or from a well-developed transgressive base. A different situation has been observed in the western portion of the Upper Eocene flysch basin of Ov?e Pole, Macedonia, where deep-water turbidites appear almost directly over the eroded basement, transgressively overlapping the preexisting submarine relief. These relationships are explained as results of successive phases of subsidence in the basin. The outcrop area, situated between Titov Veles and Gradsko, represented a surface without deposition in the early depositional stages. Later subsidence introduced a turbiditic deposition into the domain without a break in sedimentation. Such cases may occur also in other flysch basins where lateral migration of the main depositional trough took place during the sedimentation.  相似文献   

    19.
    《International Geology Review》2012,54(16):2030-2059
    Seismic and sequence stratigraphic analysis of deep-marine forearc basin fill (Great Valley Group) in the central Sacramento Basin, California, reveals eight third-order sequence boundaries within the Cenomanian to mid-Campanian second-order sequences. The third-order sequence boundaries are of two types: Bevelling Type, a relationship between underlying strata and onlapping high-density turbidites; and Entrenching Type, a significantly incised surface marked by deep channels and canyons carved during sediment bypass down-slope. Condensed sections of hemipelagic strata draping bathymetric highs and onlapped by turbidites form a third important type of sequence-bounding element, Onlapped Drapes. Five tectonic and sedimentary processes explain this stratigraphic architecture: (1) subduction-related tectonic tilting and deformation of the basin; (2) avulsion of principal loci of submarine fan sedimentation in response to basin tilting; (3) deep incision and sediment bypass; (4) erosive grading and bevelling of tectonically modified topography by sand-rich, high-density turbidite systems; and (5) background hemipelagic sedimentation. The basin-fill architecture supports a model of subduction-related flexure as the principal driver of forearc subsidence and uplift during the Late Cretaceous. Subduction-related tilting of the forearc and growth of the accretionary wedge largely controlled whether and where the Great Valley turbiditic sediments accumulated in the basin. Deeply incised surfaces of erosion, including submarine canyons and channels, indicate periods of turbidity current bypass to deeper parts of the forearc basin or the trench. Fluctuations in sediment supply likely also played an important role in evolution of basin fill, but effects of eustatic fluctuations were overwhelmed by the impact of basin tectonics and sediment supply and capture. Eventual filling and shoaling of the Great Valley forearc during early Campanian time, coupled with dramatically reduced subsidence, correlate with a change in plate convergence, presumed flat-slab subduction, cessation of Sierran arc volcanism, and onset of Laramide orogeny in the retroarc.  相似文献   

    20.
    Sediment avalanche from delta ramp is one of the significant development mechanisms for a turbidite system in a lacustrine basin. To advance our understanding of deep-water sedimentary processes in a lacustrine delta ramp, delta-fed turbidites in the Eocene Dongying depression of the Bohai Bay Basin were studied using core data, 3-D seismic data and well log data. Sandy debris flows, muddy debris flows, mud flows, turbidity currents, slides, sandy slumps and muddy slumps were interpreted based on the identification of lithofacies. Data indicates that deep-water sedimentary processes in the study area were dominated by debris flows and slumps, which accounted for ~68% and 25% (in thickness) of total gravity flow deposits, respectively; turbidity-current deposits only accounted for ~5%. Mapping of turbidites showed that most were deposited after short-distance transportation (<20 km), restricted by the scale of deep-water areas and local topography. Channels, depositional lobes, debris flow tongues, muddy turbiditic sheets, slides and slumps were identified in a delta-fed ramp system. Slides and slumps were dominant at the base of slopes or at the hanging walls of growth faults with strong tectonic activity. Channels and depositional lobes developed in gentle, low-lying areas, where sediments were transported longer distances. Sand-rich sediment supply, short-distance transportation and local topography were crucial factors that controlled sedimentation of this ramp system. Channels generally lacked levees and only produced scattered sandstones because of possible hydroplaning of debris flow and unstable waterways. In addition to lobes, debris flow tongues could also be developed in front of channels. These findings have significant implications for hydrocarbon exploration of deep-water sandstone fed by deltas in a lacustrine basin.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号