首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 679 毫秒
1.
青藏高原东北缘重力异常多尺度横向构造分析   总被引:8,自引:6,他引:2  
孟小红  石磊  郭良辉  佟拓  张盛 《地球物理学报》2012,55(12):3933-3941
本文研究了青藏高原东北缘地区布格重力异常特征,采用优化滤波法和归一化总水平梯度垂直导数法对研究区重力异常进行多尺度分离和横向构造分析.分离出的多尺度重力异常特征表明:1) 青藏高原东北缘地区大致以东经106°线为界,有一条醒目的重力异常梯级带,即贺兰山-六盘山-川滇南北构造带的北段,其东西两侧布格重力异常特征在形态和走向上截然不同,意味着两侧密度结构和构造特征存在明显差异. 2) 鄂尔多斯地块内部定边以北,重力异常高带走向由北东向转为近南北向,推测定边附近存在一个密度或构造界面,其两侧物质组成和构造特征具有差异,对比大尺度重力异常和中尺度重力异常,表明异常特征的这种差异主要是由上地幔深部结构引起的. 3) 青藏高原东北部各块体深部边界位置与地表构造分布不同,反映出该区构造复杂,深浅构造差异大. 4) 由于印度-欧亚板块碰撞及随后印度板块持续向北的挤压作用,造成青藏高原东北缘中、下地壳物质在巨大的北东向推挤力和鄂尔多斯刚性块体阻挡的共同作用下,沿着相对软弱的秦岭造山带方向蠕动.依据多尺度重力异常及其横向构造特征,综合推断出研究区内五条断裂带,即秦岭地轴北缘断裂带、海原-六盘山断裂带、香山-天景山断裂带、烟筒山断裂带和青铜峡-固原断裂带,并分析了它们在地壳深部的可能展布特征.  相似文献   

2.
本文采用欧拉反褶积、场源参数成像(SPI)、场源边界提取(SED)、莫霍面反演、地壳三维可视化等多源方法,对青藏高原东北缘地区的布格重力场进行反演与分析,深入研究该地区的深部结构与变形特征,探讨区域深部孕震环境及动力学机制.研究表明,青藏高原东北缘的布格重力场整体呈负异常值,具有明显的分区性,表现出鄂尔多斯盆地异常值相对偏高、阿拉善块体次之、青藏高原块体极低的特点,其中海源断裂系形成了一条宽缓的弧形重力梯度条带,梯度值达1.2 mGal·km^-1.欧拉结果显示,鄂尔多斯盆地相比于青藏高原块体而言,场源点具有较强的均一性,场源强度值高(密度值高)且深度稳定在25~32 km范围内,而高原块体的中下地壳尺度广泛分布着低密度异常体.SPI图可知,海源弧形断裂系位于“浅源异常”弧形区,反映其地壳较为活跃,易发生中强地震.SED图揭示青藏高原地壳向东北扩展,经过几大断裂系的调节后运动矢量向东或东南转化,SED与GPS、SKS运动特征大致相同,说明地表-地壳-地幔的运动特征有着较强的一致性.青藏高原东北缘地区壳幔变形是连贯的,加之莫霍面由北向南、由东向西是逐渐加深的,因此属于垂向连贯变形机制,不符合下地壳管道流动力学模式.区域形成了似三联点构造格局,其中海源弧形断裂系的深部地壳结构复杂,高低密度异常体复杂交汇,是青藏高原、阿拉善、鄂尔多斯三大块体相互作用的重要枢纽,其运动学特征总体为中段走滑尾端逆冲,而断裂系正处于大型的弧形莫霍面斜坡带之上,具备强震的深部孕震环境,因此大尺度的运动调节与深部孕震条件共同促使了该地区中强震的多发.  相似文献   

3.
青藏高原边缘是研究青藏高原构造生长的重要场所.然而,青臧高原各边界却呈现出不同的地貌形态响应.尤其是青藏高原东北缘的六盘山地区,与青藏高原东缘相比,它与邻近稳定鄂尔多斯地台之间表现出了截然不同的地形变化.青藏高原东边界所对应的龙门山构造带呈现出高陡的地貌形态:在100 km范围内,海拔高程从四川盆地的500 m陡升至临近的龙门山构造带的3500 m.而青藏高原东北边界所对应的六盘山构造带则与邻近的鄂尔多斯盆地表现为宽缓的地形变化.之前由于缺少高精度的数据资料,对造成这一地表形态差异所对应的地壳结构缺少必要的了解.在本次研究中,将着重利用前期在青藏高原东北缘六盘山地区所获得的165 km长高分辨率深反射地震数据,并结合在此区域所获得的航磁数据资料进行该地区地壳结构的综合解释,得出青藏高原东北缘一鄂尔多斯地块构造转换带的地壳结构变形模型.研究表明六盘山地区主要物质组成为构造增生楔,其两侧分别存在陇西火山岛弧和鄂尔多斯结晶基底.高原生长所产生的构造应力并不能使相对松散的构造增生楔无限制的抬高而是容易发生重力坍塌,从而造成六盘山地区比较宽缓的地形结构.同时本文还将此地壳结构研究结果与前人在青藏高原东缘所获得的地壳结构及变形机制进行对比分析,探讨这两个地区的构造变形模式,并找出两个地区的构造变形共性和差异.研究结果也将为了解青藏高原侧向构造生长过程提供理论和数据支持.  相似文献   

4.
青藏高原东缘地区活动断裂极其发育,强震繁发,特别是2008年5月12日的汶川Ms8.0级地震的发生,使得众多地球科学家认识到有必要更为全面地了解和认识该地区的地应力场背景和地球动力学环境.本论文结合活动构造的性质和分布特征,在考虑重力因素的条件下,利用三维粘弹性有限元模拟分析青藏高原东缘现今地应力场的分布特征和控制因素.模拟结果表明,印度板块与欧亚板块的持续碰撞和稳定华南块体的阻挡控制着青藏高原东缘总体的动力学环境,主要活动断裂和次一级活动断裂的展布对地应力场分布特征具有不同程度的影响,在不同的构造位置具有不同的地应力场特征,同时决定了相应活动断裂的性质.巴颜喀拉块体的水平最大主应力方向总体上为东西向;印度板块向北运动过程中对缅甸块体产生的剪切拉伸的作用和南海伸展性的边界使得水平最大主应力方向在川滇地块发生了偏转,同时造成了围绕喜马拉雅东构造结的旋转变形.青藏高原东缘在近地表区域由于受到地形地貌的影响,地应力随深度发生了不同程度的变化,在地形梯度较大和块体边界地壳结构发生较大变化的区域,如龙门山断裂带附近,地壳浅部的地应力随深度发生较为明显的变化,而地势比较平缓和地壳岩石物性比较稳定的地区,由浅到深的地应力变化较小.  相似文献   

5.
新生代青藏高原的隆升改变了整个亚洲的构造格局,对气候、环境均产生了重要的影响,但高原的隆升扩展机制众说纷纭.青藏高原东南缘作为扩展前缘,其构造演化对了解整个高原的扩展机制具有重要的意义.本文总结了近年来对青藏高原东南缘地壳结构研究的最新进展,特别是2011年中国地震科学探测台阵计划开展以来,利用密集地震台阵取得的新成果,探讨了青藏高原东南缘地壳的结构与变形机制.这些研究发现青藏高原的地壳由高原向外围减薄,但在高原边界断裂附近存在地壳厚度突变带;下地壳中存在两个独立的低速异常,一个位于松潘—甘孜块体下方,被高原的边界断裂所围限,另一个位于小江断裂带下方,呈NE-SW向展布.我们认为青藏高原东南缘下地壳物质被边界(丽江—小金河)断裂所围限,并没有继续向边缘流出,但是地壳挤出产生的应力作用继续向东南方向传递,造成了小江断裂带附近的地壳变形.  相似文献   

6.
鄂尔多斯地块深部岩石圈电性结构研究   总被引:9,自引:3,他引:6       下载免费PDF全文
近年来新的研究成果反应出鄂尔多斯地块岩石圈并不是一个具有深根的完整的刚性块体,尤其在鄂尔多斯北部以及河套地堑发现有大范围的下地壳-上地幔低速低阻物质,如果这一情况属实,那么人们对鄂尔多斯地块的认识将发生大的变化.为此,我们在华北克拉通西部布设了一条穿过鄂尔多斯地块、河套地堑和阴山造山带的南北向大地电磁剖面,试图通过深部电性结构的探测提供更多信息.该剖面全长约850 km,共布设54个宽频测点和17个长周期测点.二维和三维反演结果均表明:鄂尔多斯地块内部以38°N为界,南部和北部电性结构存在明显差异.鄂尔多斯地块南部地壳至上地幔150 km深度范围内整体表现为高阻,具有刚性克拉通的特征;鄂尔多斯地块北部到河套地堑之间下地壳出现低阻层,特别是鄂尔多斯北端与河套地堑接壤地段,深部存在一个规模较大的下地壳-上地幔低阻异常体,该异常体从河套地堑开始,横向上向南延伸到鄂尔多斯地块内部约200 km,纵向上从下地壳向下延伸到上地幔(约100 km深度).根据该异常体的空间特征,参考该区地震波低速异常体的分布,我们认为鄂尔多斯北部及河套地堑中下地壳到上地幔存在热物质,其原因与深部的构造活动有关(软流圈热物质上涌、侧向流动等),这一情况可能反映出鄂尔多斯地块北部岩石圈深部正处于被改造(或者破坏)阶段,这对进一步认识青藏高原东北缘与华北克拉通之间的深部关系具有一定的启示作用.  相似文献   

7.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 MS8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的"解耦层",也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   

8.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 Ms8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的“解耦层”,也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   

9.
李莹  高原 《地震》2021,41(4):15-45
青藏高原东南缘受印度板块NE向推挤和高原物质SE向挤出及四川盆地、 华南块体阻挡的共同作用, 成为高原物质SE向逃逸的关键通道。 本文综述了青藏高原东南缘由不同震相和不同方法得到的不同深度的地震各向异性结果, 结合区域内断裂分布、 地表运动、 构造应力以及深部结构等方面, 全面分析了青藏高原东南缘上地壳至中下地壳及上地幔的介质各向异性与变形耦合特征。 青藏高原东南缘壳幔地震各向异性的差异反映了区域内复杂的深部构造和壳幔变形。 由于青藏高原形成机制、 壳幔耦合状态和软弱层分布形态等科学问题尚处于学术探讨之中, 有效结合不同数据和综合多种方法, 有益于获得更加准确、 精细的地壳—上地幔地震各向异性图像, 对深部物质运动与动力模式进行更有效的约束。  相似文献   

10.
研究青藏高原及邻近地区地壳磁异常场分布特征,对认识该区岩石圈结构和演化以及区域地球动力学过程有重要意义.本文根据地面、航空、海洋和卫星磁测资料构建的最新一代高阶地磁场模型NGDC-EMM-720-V3,分析青藏高原及邻区地壳磁异常及其垂直梯度的展布规律、磁异常衰减特征、不同波长带对磁异常的贡献和磁异常与岩石圈区域构造的关系.结果显示,青藏高原正负磁异常都较弱,周边地区磁异常强,其分界与高原区域构造的边界基本吻合.磁异常在青藏高原中西部呈近东西走向,西南部和东部形成弧形状,东南部为近南北走向,与构造走向基本一致.东、西构造结地区形成强的负异常焦点.青藏高原内部各新生代地块的磁异常无明显差异,磁异常与地壳厚度没有直接对应关系.在青藏高原弱磁异常背景上,拉萨地块、祁连地块、柴达木地块和川滇菱形地块叠加有相对较强的地壳浅部的短波长磁场.喜马拉雅分布着东西向强负磁异常带,主要由地壳深部和中部的中长波长带产生.四川盆地和塔里木盆地的磁性构造层稳定.高原南部不同高度处的磁异常变化较大,揭示出从地壳深部到浅层地表的磁性构造发生过剧烈变化.  相似文献   

11.
The North China Craton (NCC) is one of the oldest cratons on earth. Several important tectonic transformations of Mesozoic-Cenozoic tectonic regime led to the destruction of the North China craton. The knowledge of crustal structure can provide important constraints for the formation and evolution of cratons. New maps of sediment thickness, crustal thickness (H) and vP/vS (κ) in the central and western NCC were obtained using sequential H-κ stacking. P-wave receiver functions are calculated using teleseismic waveform data recorded by 405 stations from ChinArray project. Benefiting from the densely distribution of temporary seismic stations, our results reveal details of the crustal structure in the study area. The thickness of sedimentary layer in North China ranges from 0–6.4 km, and the thickest sedimentary layer is in Ordos block and its surroundings (about 2.8–6 km); The thickness of sedimentary layer in the Mongolia fold belt and Yinshan orogenic belt is relatively thin (less than 1 km). The crustal thickness of the study area varies between 27–48 km, of which the crust of the North China Plain is about 30–33 km, the central NCC is about 33–40 km, and the Ordos block is 40–48 km thick. The average vP/vS ratios in the study area is mostly between 1.66 and 1.90, and that in the Yanshan-Taihang mountain fold belt is between 1.70 and 1.85, and that in the Ordos block is between 1.65 and 1.90, with an average value of 1.77, indicating the absence of a thick basaltic lower crust. The obvious negative correlation between crustal thickness and average vP/vS ratio within Ordos and Central Asia orogenic belt may be related to magmatic underplating during the crustal formation. There is no significant correlation between the crustal thickness and the vP/vS ratio in the Lüliang-Taihang mountain fold belt, which may be related to the multiple geological processes such as underplating and crustal extension and thinning in this area. The lack of correlation between crust thickness and topography in the central orogenic belt and the North China Basin indicates the topography of these areas are controlled not only by crustal isostatic adjustment but also by the lithospheric mantle processes.  相似文献   

12.
Magnetotelluric data are collected along a NW-SE trending and about 900km long profile within northeastern boundary areas of the North China craton(NCC). This profile extends from the Hegenshan belt within the Central Asian orogenic belt(CAOB), across the Baolidao arc, Solonker-Linxi suture zone, Ondor Sum accretion complex, Bainaimiao arc, Inner Mongolia paleo-uplift, Yanshan belt, and ends on the Liaohe depression of the NCC. Impedance tensor decomposition methods are used to study the dimensionality and geo-electric strike of MT data of the region. Two-dimension (2D) analysis is appropriate for this profile. The 2-D subsurface electrical resistivity structure along profile is obtained using the non-linear conjugate gradient (NLCG) algorithm. The electrical resistivity structure is characterized by lateral segmentation, and divided into high resistive, low resistive, and high resistive areas; The lateral variation of electrical resistivity is significant within the CAOB, but it is smooth in the NCC; The extensive high conductive body(HRB)is observed in the mid-low crust beneath the Solonker-Linxi suture zone and Inner Mongolia paleo-uplift, respectively; The low resistivity could be due to the partial melts and crustal flows. Based on our electrical resistivity structure and other geological, geophysical observations, we speculate that (1)the final suturing of the Siberian craton to the NCC could be along the areas between Xilinhot Fault and Xar Moron Fault; (2)the relatively thick high resistive body beneath the Yanshan belt may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection system, and lower the effect of tectonic evolution of CAOB on the destruction to NCC.  相似文献   

13.
基于华北中西部和青藏高原东北缘3个流动台阵共480个台站新得到的远震XKS(SKS、SKKS和PKS)波分裂结果,并结合研究区已得到的987个台站的分裂结果,获得了高分辨率的上地幔各向异性图像.分析表明,鄂尔多斯块体的时间延迟较小,反映了其稳定性和弱的各向异性变形特征,可能保留了古老克拉通根的"化石"各向异性,但其靠近边缘的局部区域表现出与相邻边缘相一致的各向异性特征,反映了其局部区域受到了与其相邻边缘的构造活动影响.青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘快波方向主要为NW-SE方向,鄂尔多斯块体北缘主要为NNW-SSE方向,反映了青藏高原沿NE方向推挤过程中岩石圈沿NW-SE方向和NNW-SSE方向发生了伸展变形;位于四川盆地和鄂尔多斯块体两个刚性块体间的秦岭造山带的快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,推测岩石圈东向挤出和软流圈东流共同促进了观测的各向异性;在鄂尔多斯块体南部边缘,快波方向自西向东逆时针沿西南缘六盘山的NW-SE方向转到南缘渭河地堑的近E-W方向再到东南缘太行山的NEE-SWW方向,推断该区域可能存在一个绕刚性块体的逆时针软流圈绕流,与上覆岩石圈左旋简单剪切变形产生了观测的各向异性,并一起驱动了鄂尔多斯块体的逆时针旋转.作为华北克拉通东西部的过渡带,华北中部的各向异性相对复杂,其东部快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,其各向异性主要反映了太平洋板块西向俯冲作用引起的地幔流;其西北部吕梁山的各向异性主要由岩石圈沿NNW-SSE到NW-SE的拉张变形导致,而西南部太行山的各向异性还反映了软流圈绕流作用.鄂尔多斯块体东北缘大同火山区存在一个快波方向顺时针快速旋转且时间延迟较小的区域,可能与火山群下地幔岩浆上涌形成的局部地幔对流相关.紧邻华北北部的中亚造山带中南部快波方向为近E-W方向,其各向异性不仅受到与构造走向一致的岩石圈变形作用,而且也受到太平洋板块西向俯冲引起的地幔流影响.  相似文献   

14.
阴山造山带位于鄂尔多斯盆地的北缘,这一地带不仅是构造活动强、弱的变异地域,且为盆、山的耦合地带,故在造山带与盆地地域具有各异的深层动力过程.本文基于高精度人工源地震宽角反射、折射探测和高分辨率的数据采集,通过反演求得了满都拉—鄂尔多斯—榆林—延川长达650 km剖面辖区的岩石圈精细层、块结构.研究结果表明:①沿该剖面由南向北地壳厚度为40~45 km;在不同构造单元其介质、结构均不相同;速度分布、空间结构形态和界面起伏及属性亦存在着明显差异;上地幔顶部速度为8.0~8.1 km/s;②沿剖面存在5条深、大断裂,且将该区切割成为壳、幔结构明显差异的4个构造单元,即鄂尔多斯盆地、盆山耦合地带、阴山造山带、内蒙构造带,它们各自具有固有的深层过程和动力学响应.同时厘定了阴山造山带与内蒙构造带之间的白云鄂博深、大断裂带是古亚洲洋的南界.在这里不仅导致了阴山造山带的形成,而且聚集了诸多的金属矿产资源,地震亦频繁活动.基于上述研究表明,阴山造山带—鄂尔多斯盆地耦合地带的壳、幔结构复杂、呈现出速度结构各异的层、块状展布.显然,在这一错综的成山、成盆、成岩、成矿和成灾地带,有着特异的深层过程和动力机制.  相似文献   

15.
通过对跨越阴山造山带及鄂尔多斯块体北部的长剖面进行人工源宽角反射/折射地震探测,采集了地震记录中sg震相的走时,并进行了反演,求得了沿剖面辖区的上地壳S波速度结构模型.同时利用P波和S波速度结构求取了剖面沿线上地壳中泊松比的分布.根据所得到的地震波场属性与结构,结合该区已有的地质研究成果和钻孔信息,推断了剖面沿线不同构...  相似文献   

16.
The Weihe Basin is the main component of the extrusion and escape shear zone between the ancient North China craton block in Ordos and the ancient Yangtze platform in Sichuan Basin, and carries the dynamic transmission from the main power source of the Qinghai-Tibet Block in the west to the North China and South China regions in the east. The basin itself plays multi roles in the east-west and north-south tectonic movement, and is an excellent site for studying the structural interlacing, dynamic transformation and transmission. At the same time, Weihe Basin is also a famous strong earthquake zone in China. Historically, there was a strong earthquake of magnitude 8 1/4 occurring in Huaxian County in 1556, causing huge casualties and property losses. In view of the special geological structures and the characteristics of modern seismicity activities in the Weihe fault-depression zone, it is necessary to carry out fine three-dimensional velocity structure detection in the deep part of Weihe Basin and its adjacent areas, so as to study the relationship between velocity structure and geological structural units and their evolution process, as well as the deep medium environment where earth ̄quakes develop and occur. We investigate the S-wave velocity structure beneath Weihe Basin and its adjacent regions based on continuous background noise data and teleseismic data recorded by 257 broadband stations in Shaanxi Province and its adjacent regions and China Seismological Science Array Exploration Project, and by adopting seismic surface wave inter-station method and background noise cross-correlation method, a total of 10 049 fundamental-mode Rayleigh surface wave phase velocity dispersion curves in the periods of 5~70s are obtained. Firstly, using the average dispersion curve in this study area, we obtain the one-dimensional average S-wave velocity structure model of the study area, and then we apply the ray-tracing surface-wave-dispersion direct inversion method to obtain the S-wave velocity structure of the crust and uppermost mantle (3~80km) beneath Weihe Basin and its adjacent regions. The test results of a 1°×1° grid checker board show that the recovery is good, except for the areas east of 111° and south of 32° of the study area, where there is almost no resolution. The imaging results show that the velocity structure beneath each tectonic unit in the study area has a certain distribution rule, and there is a good correlation between surface geological structure and deep velocity structure. Based on the analysis of velocity slices at different depths and S-wave velocity structures of three profiles, and combined with existing geological structures, geophysics and other deep exploration research results, we obtain the following knowledge and conclusions:1)The thick sedimentary layer covering the top of Weihe Basin is the cause of low velocity anomaly in its shallow crust, the middle and upper crust of the basin are of low velocity structure, and the low-velocity zone extends about 25km, the Moho interface uplifts abruptly relative to both the Ordos Block and the Qinling orogenic belt on opposite sides, and high-speed materials from the upper mantle intrude into the lower crust, which may be related to the underplating of mafic-ultramafic materials from the upper mantle in Mesozoic-Cenozoic period; 2)The south Ordos Block is not a homogeneous whole, the low-velocity structure of the shallow crust in southern Ordos Block is thin in east and thick in west, which may be related to the overall tilting of the Ordos Basin since the Phanerozoic, as well as the differential uplift and strong and uneven denudation of the Ordos Block since the Late Cretaceous. The crustal structure of the south Ordos Block is relatively simple and homogeneous. There is no significant low-velocity structure in the curst of the block, which shows that the low-velocity structure in the crust does not penetrate the whole Ordos block. We speculate that the southern Ordos Block still maintains the stable craton property, and has not been reformed significantly so far; 3)The variation characteristics of deep structure of the Qinling orogenic belt reflect the deep crustal structure and tectonic deformation characteristics of the orogenic belt which are strongly reformed by land-land collision and suture between North China plate and Yangtze plate, intracontinental orogeny, uplift of Qinghai-Tibet Plateau and its northeastern expansion since the Late Hercynian-Indosinian period. The deep structure beneath the eastern and western Qinling orogenic belt is different and has the characteristics of segmentation. The low-velocity anomaly at the bottom of the lower crust of the orogenic belt may be affected by tectonic activities such as uplift and outward extension of the NE Tibetan plateau, and the analysis considers that there is little possibility of the existence of lower crustal circulation channel for the eastward flowing of Tibetan plateau materials in the Qinling orogenic belt. However, since the maximum depth from the inversion of this paper is 80km, which is located at the top of the upper mantle, our results cannot prove that there exists a mantle flow channel for the eastward flow of Tibetan plateau material beneath the Qinling orogenic belt.  相似文献   

17.
In 2010, a 500-km-long wide-angle reflection/refraction seismic profile was completed, running northwest from the central Sichuan Basin. This profile orthogonally crosses the meizoseismal area of great Wenchuan earthquake of 12 May 2008, which occurred in the central part of the Longmenshan. The profile also passes through the northwestern Sichuan Plateau, along which a new deep seismic sounding observation system was set up that was much improved over previous datasets and enabled abundant observations to be recorded. Seismic wave phase records that reflect the structural characteristics of different tectonic blocks, especially the complicated phase features associated with the Wenchuan earthquake, were calculated and analyzed in detail. A 2D crustal P-wave velocity model for the orogenic belt in the central Longmenshan and its margins was determined, and crustal structure differences between the stable Sichuan Basin and the thickened northwestern Sichuan Plateau were characterized. Lithological variations within the upper and lower crust in the interior of the plateau, especially a great velocity decrease and plastic rheological properties associated with strong lithologic weakening in lower crust, were detected. From west to east in the lower crust beneath the orogenic belt lying between the Sichuan Basin and the northwestern Sichuan Plateau, a giant shovel-like upwelling is observed that dips gently in the lower part and at higher angles in the upper part; this is inferred to be related to the fault systems in the central Longmenshan. An upwelling in the upper-middle crust along the eastern margin of the orogenic belt is associated with steeply dipping thrusts that strongly uplift the upper crust and crystalline basement beneath a central fault system in the Longmenshan. The data, combined with an understanding of the regional tectonic stress field and previous geological results, enable a discussion of basin-and-range coupling, orogenic tectonics, the crustal fault system, and the seismogenic tectonic environment of the central Longmenshan along the eastern margin of the Qinghai-Tibet Plateau.  相似文献   

18.
南北构造带及邻域地壳、岩石层速度结构特征研究   总被引:4,自引:4,他引:0       下载免费PDF全文
本文利用重力数据采用Parker-Oldenburg方法反演了南北构造带及邻域地区的地壳厚度,同时采用体波地震层析成像方法反演了研究区的地壳至上地幔的三维速度结构.根据计算结果对研究区的地壳及岩石层结构进行了探讨,力图揭示南北构造带及邻域地壳、岩石层变形特征,并且对青藏高原边缘活动带壳幔构造演化的深部成因、研究区的上地幔流变性及其动力学意义进行了相应的讨论.通过分析研究表明南北构造带地区为地壳厚度剧变区,西侧为地壳增厚区,东侧的鄂尔多斯、四川盆地为地壳稳定区,而再向东为地壳逐渐减薄区.中国岩石层减薄与增厚的边界基本被限定在大兴安岭—太行山—秦岭—大巴山—武陵山一带,这也是东部陆缘带和中部扬子、鄂尔多斯克拉通地区深部构造边界的分界线,其两侧不仅浅层地质构造存在较大的差异,上地幔深部的物性状态和热活动也明显不同,这说明研究区的岩石层和软流层结构以及深部物质的分布存在横向非均匀性.中部地区和青藏高原深部构造边界的分界线位于东经100°—102°左右.  相似文献   

19.
We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC) along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data. This profile extends from southwest Yan'an of central Shaanxi Province of China(109.47°E), across the southern Trans-North China Orogen(TNCO), the southwestern part of the North China Plain(NCP), the Luxi Uplift(LU) and the Sulu Orogen(SLO), ending at Qingdao City of Shandong Province, the eastern margin of China(120.12°E) along 36°N. We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC. Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features. Higher lower crustal velocity and Moho depth ~42 km is a major feature of the crust beneath southern Ordos Blockt. The TNCO which is composed of Lyuliangshan Mountains(LM), Shanxi Graben(SXG) and Taihangshan Mountains(TM) shows dominant trans-orogenic features. The NCP shows a dominant thickening of sediments, sharp crust thinning with Moho depth ~32 km and significant lower average velocity. The SLO and the LU shows a stratified crust, higher average velocity and crust thinning with Moho depth of ~35 km. Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号