首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Concentrations of the elements Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V and Zn were measured in the moss Pleurozium schreberi from the Tatra National Park, one of the most protected regions in Poland. The moss samples were collected at different elevations between 860 and 2220 m a.s.l. P. schreberi was used as bioindicator for long range transported atmospheric pollution investigating the hypothesis that elevation influences the concentrations of elements in this moss. Principal component and classification analysis (PCCA) distinguished between mosses from the highest and the lowest elevations and mosses from West/East oriented valleys. P. schreberi from the highest elevations contained the highest concentrations of Cd, Cu, Cr, Fe, Mn, Pb, V and Zn. P. schreberi from the lowest elevation contained the highest concentration of K. P. schreberi from West/East oriented valleys contained the highest concentrations of Ni and Co. P. schreberi from the Tatra National Park, one of the most protected areas in Poland, receives metals originating from long distance aerial transport.  相似文献   

2.
Moss transplants of the species Rhytidiadelphus squarrosus and Pleurozium schreberi were used as active biomonitoring organisms as a part of a monitoring study to assess the impact of metals associated with ambient particles on mosses at roadsides.The moss samples were exposed at a semi-urban and roadside site for 3 months for subsequent analysis of metal concentration (Cu, Pb and Zn). This field experiment was carried out to investigate the accumulation of the metals over a period of 0, 4, 8 and 12 weeks at the two sites. The metal concentration in the moss samples generally increased with the length of exposure and was higher at the roadside site. The two species, however, showed slightly different accumulation patterns. In addition to the metal analysis chlorophyll concentrations were analysed as a measure of stress response in the moss samples of the above mentioned field exposures. The chlorophyll concentrations of exposed mosses showed no or only weak correlations to the concentration of the three metals measured in the moss, which suggests that other conditions have a greater influence on the chlorophyll concentration.The effect of a single metal on the moss was studied in laboratory experiments exposing R. squarrosus to the metals copper, lead and zinc at concentrations based on the above field data. At the concentrations used there was a significant reduction in the chlorophyll a concentration after exposure to copper.  相似文献   

3.
In the year 2000, the elemental composition of mosses collected from 528 French sites has been studied as part of the 2000 European Moss Survey. Five moss species were collected: Scleropodium purum (56%), Pleurozium schreberi (18%), Hypnum cupressiforme (18%), Thuidium tamariscinum (4.5%.) and Hylocomium splendens (3.5%). Mosses were kept whole for analysis, including green and brownish parts. Summary statistics on element concentrations (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, Rb, Sr, V and Zn), and comparisons made with data from the other 27 participating European countries are shown here. The sources of these elements are identified using calculations of enrichment factors (EF) and principal component analysis (PCA). Finally, the spatial distribution in France of 10 elements is also shown, using maps underscoring areas showing highest concentration levels for each metal.  相似文献   

4.
Many lichens are very sensitive to air pollution due to their symbiotic nature. However, they are generally less sensitive to toxic effects of trace elements; therefore they can be used as accumulator organisms for estimating concentrations of these elements in the environment. Heavy metal accumulation in lichens is a commonly used bioindication method for assessing heavy metal ambient levels. An active biomonitoring method was used for the determination of short-term accumulation of zinc, lead, arsenic and cadmium by epiphytic lichens transplanted at different localities in Slovenia polluted by heavy metals. The atomic absorption spectrophotometry method was used for the determination of heavy metal content in lichen thalli. The content of heavy metals in lichens collected in the background area with clean air (Rogla, Pohorje Mountains) was used as the reference value. Lichens were transplanted from Rogla using the branch transplantation technique for a period of 6 months in the surroundings of Slovenian thermal power plants (Velenje, otanj, Zavodnje, Veliki Vrh, Vnajnarje, and Dobovec) and close to the lead and zinc ore smelter at erjav. The monthly accumulation of heavy metals was comparable within years at selected locations. Heavy metal pollution was the highest at erjav despite of remediation of lead and zinc ore smelter. The monthly accumulation of all four heavy metals was statistically significantly higher in lichens exposed at erjav than at other localities.  相似文献   

5.
Test shallot plants Allium cepa L. var. ascalonicum were exposed to field conditions at six research plots in the most polluted areas in Slovenia in the vegetation seasons in 1999 and 2000. The intention of this research was to evaluate the influence of air pollution on mitotic activity and frequency of chromosomal aberrations in meristematic tissues of root tips of bioindication plants. Significant differences in the mitotic index and in frequency of chromosomal aberrations at different sampling plots in pot experiments were found and the correlation between the ozone concentration and the mitotic index was determined. The results showed the presence of cytotoxic substances at chosen sampling sites, which caused the decrease of mitotic cell division and the presence of genotoxic substances, which resulted in the increase of frequency of chromosomal aberrations.  相似文献   

6.
For 50 years of long observation period (1960–2009), on a high level of statistical significance (95 %), a decreasing trend of annual precipitation amounts and an increasing trend of the number of rainy days during the year (64 %) were found. For the seasonal changes (V–X), similarly, there was found a statistically significant (94 %) decreasing precipitation amount trend and an increasing trend of the number of rainy days (50 %). As far as the intensity of maximum precipitation is concerned, a very statistically significant increasing trend (95 %) was found. Taking as the basis, the model for a trend, defined for the period of 1960–2009, the increase of weighted average interval values of maximum precipitation amounts (h?≥?0.75?t 0.5) in the year 2059 was estimated to be about 26 %, in comparison with the starting year 1960. An increasing trend of maximum precipitation frequency in Wroc?aw was also proved. To a safe sewerage systems designing in Wroc?aw according to current standards (EN 752 2008; DWA-A118 2006), the precipitation frequency to the simulations of excessive accumulation occurrences to the land level should be changed.  相似文献   

7.
Spatial and temporal characteristics of temperature extremes have been investigated in Huang-Huai-Hai (HHH) region based on the daily series of temperature observations from 162 meteorological stations. A total of 11 indices were used to assess the changes of temperature pattern. Linear trend analyses revealed that the daily maximum temperature (TXx) increased at α = 0.05 level with a magnitude of 0.15 °C per decade on the regional scale during the period of 1961–2014. More pronounced warming trend of the daily minimum temperature (TNn) was detected at a rate of 0.49 °C per decade (α = 0.01 level). Consequently, a decreasing trend of the temperature range of TXx and TNn (extreme temperature range) was observed. The frequency of hot days (TXf90) and annual average of warm events (warm spell duration indicator, WSDI) showed significant increasing trends, while that of cold nights (TNf10) and cold events (cold spell duration indicator, CSDI) showed opposite behaviors. Both warm winter (W-W) and hot summer (H-S) series displayed significant increasing trends at α = 0.01 confidence level. The cold winter (C-W) series showed a decreasing trend at α = 0.01 confidence level, while the cool summer (C-S) series showed a nonsignificant decreasing trend that is not passing the 90% confidence level (α = 0.1). Abrupt increments of warm­related extremes (TXx, TXf90, WSDI) have been detected since 1990s, and a steadily decreasing trend of cold related extremes (TNf10, CSDI) was found since 1970s. Ten hot summers out of 11 and nine warm winters out of 10 occurred after 1990s. Altitude has a large impact on spatial pattern of extreme temperature indices, and the urban heat island effect also has an impact on amplitude of variation in extreme temperature. Trend magnitudes are significantly larger at sites with high altitudes for warm­related indices (TXx, TXf90, WSDI), while those involving cold-related indices (TNn, TNf10) are remarkably larger for stations with low altitudes.  相似文献   

8.
A field experiment was conducted in a maize field in 2006 in an arid area of the Yellow River Basin in China. The daytime evapotranspiration (ETc) and soil evaporation beneath the maize canopy (E g) were measured by Bowen ratio energy balance method and micro-lysimeters, respectively. The results showed that the total ETc during maize growth season was 696 mm, and the maximum values occurred at about 90–140 days after sowing. The crop coefficient (K c), which was calculated from the ratio of ETc to reference evapotranspiration (ET0), was quite different from the values reported by other researchers in similar climate areas, with average values of 0.34, 0.47, 1.0 and 0.9 for initial, development, mid-season and late-season stages, respectively. High correlations between leaf area index (LAI) and average K c for every 4 days were obtained. The total E g was 201.4 mm with average values ranged from 0.92 to 2.05 for four growth stages of maize; and accounted for around 28.9 % of ETc. The ratio E g/ETc showed high negative relationship with LAI. These results were very important in precise management of irrigation for maize in Yellow River Basin areas.  相似文献   

9.
Multifractal analysis can provide parameters associated with different scales of rainfall, which may be useful for setting up parsimonious downscaling models of rainfall, or for revealing climate-specific properties. Time series of rain rate with 1-min resolution collected from ten stations over a monsoon watershed in eastern China were used to study the multifractal properties. The power spectra estimated by fast Fourier transform (FFT) and discrete Haar wavelet transform (DWT) showed three scaling regimes: the sub-hourly scaling regime with β?≈?1.2, the scaling regime from 1 h to 1 day with β close to 0.6, and the low-frequency spectra plateau with β?≈?0.1. From the hyperbolic tails of exceeding probability distributions, the estimated values of parameter q c are in 2–2.5, which were consistent with the critical order of K(q) curves. The statistical moments display two main scaling regimes: the high-frequency regime from 3 min to 5 days and the scaling regime beyond 5 days. The scales of 5–10 days seem a transitional regime. The reason that the regimes, revealed by the power spectra, disagree with the statistical moments may be that both FFT and DWT power spectra have limited abilities of analyzing low-frequency scaling but are sensitive to the properties in high-frequency scales. The H values estimated for the regime of sub-hourly scales are larger than 0.4, and the values for the regime 1 h–1 day are close to 0.1. For the low-frequency scales beyond 1 day, negative H is obtained by DWT power spectra. The parameters of universal multifractal models were also estimated. The values of α for the scaling range of 1 min–5 days are 0.486?±?0.047, and for the low-frequency scaling range, its values are 0.808?±?0.323. For the high- and low-frequency scaling ranges, the values of C 1 are 0.5 and 0.169, respectively, which is different from the values for daily rainfall series collected at the same rain gages.  相似文献   

10.
《Atmospheric Research》2009,91(2-4):211-222
The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden.Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime–continental aerosol; 2) moderately polluted maritime–continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO4 ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.  相似文献   

11.
Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan.  相似文献   

12.
A hierarchical modeling approach is used to study the process by which interactions of easterly waves with the background flow can result in a reduction in the longitudinal and vertical scale of the waves. Theory suggests that in flows that possess a negative longitudinal gradient (U x  < 0) there is a reduction of longitudinal and vertical group speeds and an increase in regional wave action density (or “wave energy”). Relative vorticity increases locally leading to an increase in the likelihood of tropical cyclogenesis near the wave axis. Opposite impacts on the structure of the waves is expected in a U x  > 0 domain. In the simplified framework of a free-surface and divergent shallow water model, Rossby wave properties are tracked through a range of background flow scenarios to determine the important scales of interaction. The importance of wave energy accumulation for tropical cyclogenesis is then studied in a full physics and dynamics model using a nested regional climate model simulation, at 12 km horizontal grid spacing, over the tropical North Atlantic region for the entire 2005 hurricane season. The dynamical environment within which 70% of easterly waves formed tropical cyclones exhibits coherent regions in which easterly winds increase towards the east, consistent with the occurrence of wave energy accumulation.  相似文献   

13.
Trace Metals in Mosses in the Estonian Oil Shale Processing Region   总被引:1,自引:0,他引:1  
Electric energy production and most heavy industry in Estonia are concentrated in the north-eastern part of the country. Thermoelectric power plants (total maximal capacity over 3 GW), cement and chemical industries are fueled by Kukersite oil shale, mined nearby. The mineral part of oil shale is rich in trace metals that can accumulate in the local ecosystem. Samples of epigeic mosses Pleurozium schreberi and Hylocomium splendens were taken in 1992, 1997 and 2002 from sites 1 km to 30 km from the main air pollution sources and analysed for Cd, Cr, Cu, Fe, Ni, Pb, V and Zn. For background data collection, analogous measurements within the national monitoring programme were used. Raster maps of concentrations were generated from the measurements, using the Kriging algorithm. These maps were compared with the model-estimated (AEROPOL model) maps of fly ash and cement dust deposit from the past. The concentration of trace metals in mosses is highly (Cr, Fe, Ni, V) or moderately (Cd, Cu, Pb, Zn) affected by the airborne emissions of the oil shale industry. During the past decade the uptake of the first group of elements in the industrial zone has decreased 3–4 times in proportion to emissions.  相似文献   

14.
We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University’s atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /|θ*| was related to z/L, roughly following a –1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a –2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.  相似文献   

15.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

16.
To interpret past vegetation and climate changes from pollen data, we need to reveal the degree of similarity between modern analogues and fossil pollen spectra, which would help us predict the future climate and vegetation. Ninety surface pollen samples across six vegetation zones along an altitudinal gradient from 460 to 3510 m and 44 fossil samples at Caotan Lake were collected in the central Tianshan Mountains, northern Xinjiang, China. Discriminant analyses results, fossil pollen and phytolith assemblages were then used to reconstruct palaeovegetation and palaeoclimate in the area. The 90 surface samples were divided into six pollen zones (alpine cushion, alpine and subalpine meadow, montane Tianshan spruce forest, forest-steppe ecotone, Artemisia desert, typical desert), corresponding to the major vegetation types in the area. These zones follow a climatic gradient of increasing precipitation with increasing elevation. Paleovegetation reconstructed from 44 fossil pollen assemblages through discriminant analysis reflects the regional vegetation shifted from typical desert to Artemisia desert since 4640 cal. year BP in the Caotan Lake wetland. The fossil pollen and phytolith record also reveal the arid climate has not fundamentally changed in the period. But a dry-wet-dry local climate oscillation since 2700 cal. year BP has a fundamental influence on local wetland vegetation dynamics and peat accumulation of the Caotan wetland. Modern wetland landscape and surface pollen assemblages from the Ebinur Lake Wetland Nature Reserve provide further evidence for ferns and Betula growing in the Caotan Lake wetland during the historical period.  相似文献   

17.
Daily gridded (1°×1°) temperature data (1969–2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season (kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann–Kendall statistics (α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test (α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02–0.04 °C year?1) were found to be higher than that of maximum temperature (0.01–0.02 °C year?1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.  相似文献   

18.
This study describes a two-step analogue statistical downscaling method for daily temperature and precipitation. The first step is an analogue approach: the “n” days most similar to the day to be downscaled are selected. In the second step, a multiple regression analysis using the “n” most analogous days is performed for temperature, whereas for precipitation, the probability distribution of the “n” analogous days is used to define the amount of precipitation. Verification of this method has been carried out for the Spanish Iberian Peninsula and the Balearic Islands. Results show good performance for temperature (BIAS close to 0.1 °C and mean absolute errors around 1.9 °C) and an acceptable skill for precipitation (reasonably low BIAS except in autumn with a mean of ?18 %, mean absolute error lower than for a reference simulation, i.e. persistence and a well-simulated probability distribution according to two non-parametric tests of similarity).  相似文献   

19.
Weather represents the daily state of the atmosphere. It is usually considered as a chaotic nonlinear dynamical system. The objectives of the present study were (1) to investigate multifractal meteorological trends and rhythms at the Amazonian area of Ecuador and (2) to estimate some nonlinear invariants for describing the meteorological dynamics. Six meteorological variables were considered in the study. Datasets were collected on a daily basis from January 1st 2001 to January 1st 2005 (1,460 observations). Based on a new multifractal method, we found interesting fractal rhythms and trends of antipersistence patterns (Fractal Dimension >1.5). Nonlinear time series analyses rendered Lyapunov exponent spectra containing more than one positive Lyapunov exponent in some cases. This sort of hyperchaotic structures could explain, to some extent, larger fractal dimension values as the Kaplan–Yorke dimension was also in most cases larger than two. The maximum prediction time ranged from ξ?=?1.69 days (approximately 41 h) for E/P ratio to ξ?=?14.71 days for evaporation. Nonlinear dynamics analyses could be combined with multifractal studies for describing the time evolution of meteorological variables.  相似文献   

20.
The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was < 0.30 and increased to > 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05–0.21 and 0.01–0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01–0.11 in Beijing, 0.01–0.13 in Shijiazhuang, and 0.01–0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from –23 to –227,–34 to –199, and –29 to –191 W m–2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from –4 to –98, –10 to –51, and –21 to –143 W m–2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190–450 and 100–410 μg m–3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号