首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Reelfoot Lake is located within the New Madrid Seismic Zone, a region characterized by ongoing seismic activity and the locus of a series of large earthquakes (m b >7) during 1811–1812. Coseismic uplift and subsidence from the 1811–1812 events formed the lake basin from a partially inundated alluvial bottomland forest. Lithologic, chronologic, and palynologic data from a vibracore are used here to characterize the 1811–1812 earthquake record in lacustrine sediments. The stratigraphic record consists of a poorly consolidated upper silt, an intervening 10-cm sand layer, overlying a compact lower silt. Calibrated radiocarbon age estimates on wood samples from both silt units indicate deposition during historical time (1490–1890 AD).Better age estimates were obtained by correlating pollen assemblage data from the upper and lower silt with the historical record of land-use change in the Reelfoot Lake region. Two factors resulted in changing plant distributions (and hence pollen assemblages) in Reelfoot Lake sediments: 1) altered drainage patterns of Reelfoot Creek and Bayou de Chien resulting from 1811–1812 uplift and subsidence, and 2) deforestation and subsequent cultivation beginning approximately 1850 AD. The upper silt is characterized by a oak/cedar arboreal pollen (AP) assemblage, showing a mixture of upland and alluvial bottomland AP influx from the region to the open lake basin. Non-arboreal pollen (NAP) in the upper silt shows increasing abundance of Composites, particularly ragweed pollen indicating cultivation. This unit was deposited after the 1811–1812 earthquakes. The intervening sand layer was apparently emplaced by earthquake activity, or represents colluvium derived from most recent (1811–1812) coseismic uplift of Reelfoot scarp, which forms the western margin of the lake. The lower silt is characterized by a baldcypress/cedar AP assemblage with minor percentages of other flood-tolerant AP genera, interpreted as a baldcypress-dominated bottomland forest. Pollen influx in this environment is dominated by gravity-component deposition from local sources. The NAP in the lower silt shows that ragweed is rare or absent, suggesting pre-settlement conditions and deposition prior to 1811–1812.This is the 15th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

2.
A pollen record from Rock Lake in the Mission Mountains, northwestern Montana reveals a four-zone sequence reflecting Holocene vegetation change. Chronologic control is provided by two well-known tephras, Glacier Peak (11 200 yr B.P.) and Mazama (6800 yr B.P.). The presence of Glacier Peak tephra above the basal inorganic sediments indicates deglaciation prior to 11 200 yr B.P. Colonizing vegetation (Zone I) after the fall of Glacier Peak tephra was dominated byArtemisia (sage) andAlnus (alder). The presence ofAbies needles,Picea needles, and oneTaxus needle in the core demonstrates that these taxa were at Rock Lake at the time Zone II sediments were deposited. The increase inPinus,Picea, andAbies pollen in Zone II (10 850-4750 yr B.P.) suggests warmer and drier conditions prevailed, and may record the Hypsithermal. The pervasiveness ofPicea andAbies pollen in Pollen Zone III (4750-3350 yr B.P.) suggests the emergence of the modern subalpine forest. Pollen Zone IV (3350 yr B.P.-present) is characterized by relatively little change in the pollen assemblages. One noted change, however, is the increase of Cyperaceae (sedge), which may indicate an expansion of shore-line around the lake, possibly reflecting increased precipitation.This is the 5th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

3.
As part of a multidisciplinary investigation of the Misiano archaeological site, pollen and nonsiliceous algae were recovered from a 262 cm core from Gegoka Lake, Lake County, Minnesota. The palynomorph assemblage from Gegoka Lake records changes in local and regional vegetational and lake productivity over the past 10 000 years. Pollen spectra indicate that vegetation progressed from a shrub parkland/open conifer forest, to a spruce-pine forest, to a mixed conifer-hardwood forest. Pinus banksiana/resinosa is replaced by Pinus strobus about 7000 years ago. A small rise in Gramineae in the upper 17.5 cm of the core is attributed to the expansion of wild rice (Zizania aquatica) in Gegoka Lake. Four cycles of nutrient enrichment are indicated by the Pediastrum and Scenedesmus maxima in the nonsiliceous algae record. Oscillations in the nonsiliceous algae abundance probably result from changing environmental and/or limnologic conditions. The decline in nonsiliceous algae in the upper 57.5 cm of the core suggests that there has been an apparent shift to more nutrient poor conditions in Gegoka Lake in the recent past.This is the 17th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

4.
Stratigraphic pollen analysis done on sediment cores from two sites in the upper North Saskatchewan drainage basin of the eastern slopes foothills of the Rocky Mountains in west central Alberta, Canada combined with sedimentological data provide a local vegetational and environmental history. Radiocarbon AMS dates provide a chronology back to 17960 BP. Reconstruction and interpretation of the local pollen zones includes reevaluation of steppe and grassland as analogs for full- and late-glacial vegetation. Regional vegetation from c. 17960 to 16 100 BP is interpreted as an extremely cold semi-arid Artemisia steppe, the vegetation c. 16 100 to 11 900 BP as an Artemisia-Betula shrubland, and the vegetation c. 11 900–10 200 BP as a Picea woodland, in an environment characterized by consistently arid and windy conditions. This reconstruction emphasizes the significance of aridity, as opposed to simply low temperatures, as the critical factor in determining the late Quaternary vegetation of Alberta.This is the 18th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

5.
A method was developed to construct maps of former forest types based on regional pollen data in southern Sweden. The considered species were Alnus, Betula, Carpinus, Corylus, Fagus, Fraxinus, Juniperus, Picea, Pinus, Populus, Quercus, Salix, Tilia and Ulmus. A network of 37 regional pollen sites with high data quality from lakes and peat deposits were selected from Sweden south of 60 ° N. Pollen percentage values were calculated and converted into estimates of tree composition. For controlling the reliability of the reconstruction, the estimates from the core-tops were compared with present day forest inventory data, and local pollen diagrams were compared with the regional pollen diagrams. An inverse distance weighted interpolation algorithm was used to generate maps for each tree species distribution at 2000 BP, 1500 BP, 1000 BP, 500 BP and 0 BP. A supervised classification routine was implemented to generate nine different forest types common to the five studied time intervals. The maps show that the amounts and patterns of distribution of the species and the forest types have varied in a significant but systematic manner through time. The changes are due to human activities, migrational patterns and changes in climate. These maps will be of value as a basis for future landscape planning, forestry and conservation of biodiversity.This is the 20th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

6.
Raymond Basin and Bald Knob Basin, Montgomery County, Illinois, formed as kettles during Illinoian time. Fossil pollen from these basins provides information on vegetation and climate during the last glacial-interglacial cycle. The pollen profile at Raymond Basin contains an expanded Sangamonian section and an early Wisconsinan section, but both are missing the late Wisconsinan. The ages for the following pollen zones are estimated by correlation with the deep-sea 18O record.In the late Illinoian,Picea-Pinus pollen zone 1, dating from about 150–130 ka, represents an apparently closed boreal coniferous forest indicating a cold late-glacial climate. The Sangamonian includes three major pollen zones ranging from about 130–75 ka. The early Sangamonian is represented byQuercus-Ulmus-Carya-Fagus dominance in zone 2, indicating vegetation comparable to the modern deciduous forest and climate that was warm and moist. The middle Sangamonian in zone 3, which is characterized byAmbrosia-Poaceae-Cupressaceae-Quercus pollen, suggests a savanna vegetation and a warm, dry climate. The late Sangamonian is subdivided into aQuercus-Ulmus-Carya subzone (4a) that indicates a mesic forest and greater precipitation; aQuercus-Ambrosia subzone (4b) that suggests drier climate and savanna conditions; and aQuercus-Liquidambar-Carya subzone (4c), containing the southeastern forest element,Liquidambar, suggesting the peak in warmth and moisture. The early Wisconsinan is represented by a transitionalPicea-Chenopodiineae zone (5). This unusual assemblage suggests a cool prairie-like vegetation, perhaps with scatteredPicea trees at the end of that depositional interval. The Middle Wisconsinan is marked by the return of high percentages ofPicea andPinus pollen in zone 6. The latest pollen zone (7) is dominated by Chenopodiineae pollen and is absent at Raymond Basin. It is most likely Holocene in age, and probably represents prairie conditions and warm, dry climate.Apparent surface-temperature and apparent effective-moisture curves were derived from the first detrended correspondence analysis (DCA) axis of the pollen data. The first axis correlates well with the normalized deep-sea 18O curve of sea surface temperature, and the second is controlled mainly by precipitation. The interglacial vegetation differs from that predicted by models driven by orbitally-induced insolation curves.This is the 9th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994; at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

7.
Excavation below the Lake Algonquin gravel beach bar near Clarksburg, Ontario, exposed mollusc-bearing clay over a lens of plant debris. This is the northernmost and most deeply buried Lake Algonquin fossil site found thus far in Ontario. It is the first site to provide dates from directly below the Algonquin beach bar. Two radiocarbon dates of about 11 200 years confirm the age of isostatically transgressing Lake Algonquin. Plant macrofossils (21 taxa), pollen (39 taxa), molluscs (12 taxa), and ostracodes (18 taxa) indicate that the climate was colder than present by several degrees and the forest-tundra ecotone was nearby initially but retreated northward rather quickly. Upward increases in abundances and diversity of molluscs and ostracodes suggest it was a time of rapid migration and colonization of species.Deceased, 1 November 1994This is the 7th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

8.
Geomorphology of a beach-ridge complex and adjacent lake basins along the northern shore of Lake Michigan records fluctuations in the level of Lake Michigan for the last 8000 to 10 000 14C yr B.P. (radiocarbon years Before Present). A storm berm at 204.7–206 m (671.6–675.9 ft) exposed in a sandpit provides evidence of a pre-Chippewa Low lake level that is correlated with dropping water levels of Glacial Lake Algonquin (c. 10 300–10 100 14C yr B.P.). Radiocarbon dates from organic material exposed in a river cutbank and basal sediments from Elbow Lake, Mackinac Co., Michigan, indicate a maximum age of a highstand of Lake Michigan at 6900 14C yr B.P., which reached as high as 196.7 m (645 ft), during the early-Nipissing transgression of Lake Michigan. Basal radiocarbon dates from beach swales and a second lake site (Beaverhouse Lake, Mackinac Co.) provide geomorphic evidence for a subsequent highstand which reached 192.6 m (632 ft) at 5390±70 14C yr B.P.Basal radiocarbon dates from a transect of sediment cores, along with tree-ring data, and General Land Office Surveyor notes of a shipwreck, c. A.D. 1846, reveal a late-Holocene rate for isostatic rebound of 22.6 cm/100 radiocarbon years (0.74 ft/100 radiocarbon years) for the northern shore of Lake Michigan, relative to the Lake Michigan-Lake Huron outlet at Port Huron, Michigan. Changes in sediment stratigraphy, inter-ridge distance, and sediment accumulation rates document a mid- to late-Holocene retreat of the shoreline due to isostatic rebound. This regression sequence was punctuated by brief, periodic highstands, resulting in progressive development over the past 5400 14C yr of 75 pairs of dune ridges and swales each formed over an interval of approximately 72 years. Times of lake-level fluctuation were identified at 3900, 3200, and 1000 14C yr B.P. based on changes in inter-ridge spacing, shifts in the course of Millecoquins River, and reorientation of beach-ridge lineation. Soil type, dune development, and selected pollen data provide supporting evidence for this chronology. Late-Holocene beach-ridge development and lake-level fluctuations are related to a retreat of the dominant Pacific airmass and the convergence of the Arctic and Tropical airmasses resulting in predominantly meridional rather than zonal air flow across the Great Lakes region.This is the 13th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

9.
Recognition that Earth/Sun orbital changes are the basic cause for Quaternary climatic variations provides a context for explaining global environmental changes, many of which are preserved in the stratigraphic and geomorphic record of lakes. Paleoclimatic numerical models suggest the mechanisms. In subtropical latitudes such as North Africa the enhanced summer insolation culminating about 10 000 years ago resulted in the increased monsoonal rains that explain the widespread expansion of lakes in now-desert basins. But in the American Southwest lake expansion dates to 18 000–15 000 years ago, when storm tracks were displaced to the south by the ice sheets—themselves a product of earlier orbital changes. The dynamics in the resopnse of different components of the natural system to climatic change are recorded in the stratigraphy of lake sediments, not only by their pollen content as a manifestation of the regional vegetation but also by their microfossils and chemical composition as reflections of lake development.This is the 10th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest for these papers.  相似文献   

10.
A 2 m sediment core from Church's Blue Hole on Andros Island, Bahamas provides the first paleoecological record from the Bahama Archipelago. The timing of events in the lower portion of the core is uncertain due to inconsistencies in the radiocarbon chronology, but there is evidence that a late Holocene dry period altered the limnology of Church's Blue Hole and supported only dry shrubland around the site. The dry period on Andros may correlate with a widespread dry period in the Caribbean from 3200 to 1500 yr BP. After the dry period ended, a more mesic climate supported tropical hardwood thicket around Church's Blue Hole. At c. 740 radiocarbon yr BP there is a sudden rise in charcoal concentration and a rapid transition to pinewoods vegetation, while at c. 430 radiocarbon yr BP charcoal concentration drops, but is higher again near the top of the core. Although climatic shifts could have caused these changes in vegetation and charcoal concentration, the changes post-date human colonization of the Bahamas and may reflect human arrival, followed by the removal of humans c. 1530 AD and the recolonization of Andros Island c. 200 years later.This is the 12th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

11.
Profiling of ponds and bogs using ground-penetrating radar   总被引:2,自引:0,他引:2  
Ground-penetrating radar (GPR) is an electromagnetic technique that has shown particular promise in profiling bogs and freshwater ponds. GPR systems operate in a manner similar to sonar (acoustic) methods, and can complement or be used in place of sonar. GPR pulses can penetrate through shallow fresh water and into bottom sediments, providing detailed information about sediment stratigraphy, obstructions, and depth to bedrock. Peat thickness in bogs can also be readily obtained using a GPR survey. The ability to accurately determine depths in ponds, lakes, and bogs prior to coring is extremely useful for investigations in palynology. By allowing one to see into and obtain configuration and thickness of bottom sediments, GPR surveys permit placement of a core where it will yield optimum information. Where bog or water surfaces are frozen, GPR scans can be run directly over the ice.This is the 2nd in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

12.
Stable oxygen and carbon isotope geochemistry of ostracode valves, abundance and assemblages of ostracode species, and sedimentological parameters from cores taken in Williams and Shingobee Lakes in north-central Minnesota show changes in climatic and hydrologic history during the Holocene. Isotopic records are consistent with the following scenario:Before 9800 yr B.P. the two lakes were connected. Increasing evaporation through the jack/red pine period (9800-7700 yr B.P.) led to lower lake levels, leaving small separated basins. The prairie period (7700-4000 yr B.P.) reflects high aridity, and lake levels reached low stands shortly before 6500 yr B.P. Low lake levels are associated with groundwater discharge between 6500 and 6000 yr B.P. The hardwood period (4000-3200 yr B.P.) corresponds to long cold winters and warm to cool summers with lower evaporation rates and slower sedimentation. During the white pine period (<3200 yr B.P.) evaporation increased and/or precipitation shifted to the summer months.These changes can be related to shifting atmospheric circulation patterns. Zonal flow was probably dominant during the early Holocene until the end of the prairie period (c. 4000 yr B.P.). During the hardwood period a combination of zonal and meridional flow patterns caused long and cold winters and wetter summers. During the white pine period wintners were shorter and the meridional flow pattern more significant. Today meridional flow dominates the circulation pattern.This is the 6th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

13.
We present a method for identifying analogs for past fire regimes and use it to assess similarity between late Quaternary fire regimes in northern Wisconsin and central New York and a reference set of charcoal series from just prior to presettlement time. The analog method is based on comparisons of distributions of charcoal accumulation rates from annually laminated sediments using a Kolmogorov-Smirnov two-sample D statistic (D). D is a nonparametric statistic expressing the difference between distributions that does not require assumptions concerning the shape of the distributions (e.g. normality, homoscedasticity) and it summarizes differences in a single index. Our study consists of (i) mapping D values obtained by comparisons between pairs of reference charcoal series from the immediate presettlement (calibration) and (ii) identifying possible presettlement analogs from this reference set for Late Quaternary charcoal distributions. Our calibration analysis identified geographic transitions in charcoal transition that were much steeper than apparent from pollen data. Otherwise, geographic patterns in presettlement charcoal and pollen are comparable, including a group of oak/hardwood forest sites in Wisconsin, central Ontario, and New York having similar values, and another group of mostly northern hardwood/hemlock sites in Pennsylvania and Maine. Application to charcoal series dated after 11 000 yr BP at Wisconsin and New York suggests that fire regimes may have been different from those occurring at any of our reference sites. Differences in seasonality of climates and different fuel structures are a possible explanation.This is the 21st in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

14.
Meromixis has several powerful effects on lakes, yet there is no single definitive sediment indicator of meromixis. In this study three sediment indicators of meromixis were compared in Brownie Lake, Minneapolis, Minnesota, a small eutrophic lake that became meromictic around 1925. The results show that in Brownie the onset of laminations and changes in the iron to manganese ratio most likely occurred before the development of permanently anoxic bottom water and that changes in the diatom assemblage occurred later, most likely only when meromixis was well developed.This is the 11th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

15.
Late Holocene local vegetation succession is reconstructed in twodifferent sites in a small-scale open marsh ecosystem in southwest Turkey.This is done by comparison of the fossil local pollen assemblage zones in twocores with the local pollen data of 40 surface samples from the marsh. Thepollen data are supplemented with sedimentological and archaeological data. Theinsertion of the mean pollen data of the local pollen zones as passive samplesinto the canonical correspondence analysis triplot of the modern samples allowsus to detect modern analogues for the fossil pollen zones. From this numericalcomparative approach it is concluded that the marsh area was relatively dryuntil ca 2500 BP. After 2500 BP the area shifts towards a wet area dominated bySparganium and/or Typha angustifolia. A diversification of the marsh vegetationstarts at ca 2400/2300 BP. The area around one core site seems to have beensituated in an area with slowly flowing source water, whereas the other coresite is likely to have been characterised by damp conditions. The steadilyincreasing dryness of the marsh area starts after ca 680 BP. The drying upappears to be associated with recent agricultural and grazing pressure.  相似文献   

16.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

17.
The 1400 m deep drilling of Lake Biwa has revealed that the lake probably originated ca. 5 · 106 yr ago. After a geographic shift to its present position, and by more than 3.105 yr ago, it had become a large and deep lake. The considerable longevity, large size and high diversity of habitats of this lake are considered to have contributed to its high abundance of endemic taxa. These taxa fall into two categories: (1) relict species of the Asiatic continent, higher latitude or marine origin; (2) species differentiated in the lake from littoral-lacustrine species, and having adapted to habitats peculiar to Lake Biwa. I discuss some of these endemic organisms, briefly review recent in vestigations on fossil organisms of the lake, and more fully discuss the origin of a representative endemic species, the pelagic gobiid fish Chaenogobius isaza Tanaka. This species is regarded as having differentiated from some littoral Chaenogobius species, creating a novel niche in the open water area after Lake Biwa was established as a deep lake.This is the seventh of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

18.
Lago do Pires (17° 57 S, 42° 13 W) is situated at 390 m a.s.l. in the foothills of the Serra do Espinhaço, 250 km from the Brazilian Atlantic coast. The original vegetation of the study area has been almost destroyed by pastoral activity. Relicts of a dense 20–30 m tall tropical semidciduous forest are present only on a few hill tops. The dry season of the Lago do Pires region lasts for 4 months and the annual precipitation is 1250 mm. A high resolution pollen record from a 16 m long sediment core, composed of 77 samples, subdivided in 7 zones and 4 subzones, allows a reconstruction of Holocene paleoenvironments. For the early Holocene (9720-8810 B.P.), the results indicate that the region surrounding the lake was dominated by a herb savanna (campo cerrado) withCuratella americana (cerrado tree) and high fire frequency. Species ofCecropia, Urticales and a few others, form small gallery forests along the water courses. This vegetation pattern is consistent with a long dry season (perhaps 6 months) and a low annual precipitation. Between 8810 and 7500 years B.P. gallery forests expanded in the valleys and suggest a period of higher rainfall with shortened dry season (perhaps 5 months). Fire was less frequent. Reduction of gallery forests followed (7500-5530 B.P.), probably related to a return of drier climatic conditions (5–6 months dry season, lower precipitation). Fires were more frequent. Between 5530 and 2780 years B.P. in the vallyes were forests and on the hills still an open cerrado. The dry season probably was about 5 months and the rainfall was higher than in the previous period. Later (2780-970 B.P.) the more open cerrado on the hills changed to more closed cerrado. A dense and closed semideciduous forest existed in the region only in the latest Holocene period (since 970 B.P.) under the current climatic conditions. The vegetation was no longer influenced by fire. A very strong human impact by deforestation and use of fire occurred in the last decades. Today cerrado vegetation is generally restricted to central Brazil and exists in several small isolated Islands (Hueck, 1956) in the area of semideciduous forest in SE Brazil which were more widespread during the drier periods of the Holocene. The wettest period of Holocene occurs in the present millenium.This is the 4th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

19.
Siliceous microfossil assemblage succession was analyzed in a 100 m sediment core from Lake Baikal, Siberia. The core was recovered from the lake's central basin at a water depth of 365 m. Microfossil abundance varied greatly within the intervals sampled, ranging from samples devoid of siliceous microfossils to samples with up to 3.49 × 1011 microfossils g-1 sediment. Fluctuations in abundance appear to reflect trends in the marine 18O record, with peak microfossil levels generally representing climate optima. Microfossil taxa present in sampled intervals changed considerably with core depth. Within each sample a small number of endemic diatom species dominated the assemblage. Changes in dominant endemic taxa between sampled intervals ranged from extirpation of some taxa, to shifts in quantitative abundance. Differences in microfossil composition and the association of variations in abundance with climate fluctuations suggest rapid speciation in response to major climatic excursions.  相似文献   

20.
Thermal origin of mid-plate hot-spot swells   总被引:2,自引:0,他引:2  
Summary. Additional evidence supports the idea that the shallow rises surrounding mid-plate, hot-spot volcanoes are caused by a broad-scale reheating of the lithosphere above hot-spots. Firstly, as required by the reheating concept, the rises appear to be supported by a density deficiency within the normal thickness of the lithosphere. The gravity anomalies over the Bermuda, Cape Verde, Hawaii and Cook-Austral swells indicate that the compensation of these swells is only 40 to 100 km deep. The geoid anomaly over the Hawaiian swell is consistent with these depths. Secondly, as also required by the reheating concept; swells and the volcanoes formed on swells subside at the same rate as younger, hotter lithosphere which is at the same ocean depth. Almost all mid-plate swells rise to an ocean depth of 4250 m, the depth of normal 25 Myr-old lithosphere. The Hawaiian Swell, Emperor Guyots, Cook-Austral Swell and Bikini and Enewetok Atolls all subside as 25 Myr-old lithosphere subsides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号