首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Like other animal production systems, aquaculture has developed into a highly globalized trade-dependent industry. A major part of aquaculture technology requires fishmeal to produce the feed for farmed species. By tracing and mapping patterns of trade flows globally for fishmeal we show the aquaculture industry's increasing use of marine ecosystems worldwide. We provide an in-depth analysis of the growth decades (1980–2000) of salmon farming in Norway and shrimp farming in Thailand. Both countries, initially net exporters of fishmeal, increased the number of import source nations of fishmeal, peaking in the mid-1990s. Thailand started locally and expanded into sources from all over the globe, including stocks from the North Sea through imports from Denmark, while Norway predominantly relied on northern region source nations to feed farmed salmon. In 2000, both have two geographically alternate sources of fishmeal supply: the combination of Chile and Peru in South America, and a regional complement. We find that fishmeal trade for aquaculture is not an issue of using ecosystems of the South for production in the North, but of trade between nations with industrialized fisheries linked to productive marine ecosystems. We discuss the expansion of marine ecosystem appropriation for the global aquaculture industry and observed shifts in the trade of fishmeal between marine areas over time. Globalization, through information technology and transport systems, has made it possible to rapidly switch between marine areas for fishmeal supply in economically connected food producing systems. But the stretching of the production chain from local to global and the ability to switch between marine areas worldwide seem to undermine the industry's incentives to respond to changes in the capacity of ecosystems to supply fish. For example, trade information does not reveal the species of fish that the fishmeal is made of much less its origins and there is lack of feedback between economic performance and impacts on marine ecosystem services. Responding to environmental feedback is essential to avoid the trap of mining the marine resources on which the aquaculture industry depends. There are grounds to suggest the need for some global rules and institutions that create incentives for seafood markets to account for ecosystem support and capacity.  相似文献   

2.
Expansion in the world's human population and economic development will increase future demand for fish products. As global fisheries yield is constrained by ecosystems productivity and management effectiveness, per capita fish consumption can only be maintained or increased if aquaculture makes an increasing contribution to the volume and stability of global fish supplies. Here, we use predictions of changes in global and regional climate (according to IPCC emissions scenario A1B), marine ecosystem and fisheries production estimates from high resolution regional models, human population size estimates from United Nations prospects, fishmeal and oil price estimations, and projections of the technological development in aquaculture feed technology, to investigate the feasibility of sustaining current and increased per capita fish consumption rates in 2050. We conclude that meeting current and larger consumption rates is feasible, despite a growing population and the impacts of climate change on potential fisheries production, but only if fish resources are managed sustainably and the animal feeds industry reduces its reliance on wild fish. Ineffective fisheries management and rising fishmeal prices driven by greater demand could, however, compromise future aquaculture production and the availability of fish products.  相似文献   

3.
“一带一路”沿线国家2020—2060年人口经济发展情景预测   总被引:1,自引:0,他引:1  
本文应用IPCC共享社会经济路径(SSPs),开展“一带一路”沿线国家的人口和经济情景预测,研究可持续路径(SSP1)、中间路径(SSP2)、区域竞争路径(SSP3)、不均衡路径(SSP4)和化石燃料为主发展路径(SSP5)下,“一带一路”沿线国家社会经济的变化趋势,构建“一带一路”沿线国家人口和经济发展情景数据库,服务于气候变化影响、风险、适应和减缓路径方案设计。研究表明:(1)2016年“一带一路”沿线国家总人口占全球人口的62.3%,GDP总量占全球的31.2%。其中“21世纪海上丝绸之路”经过的东南亚和南亚地区经济总量大,但人口密集,人均GDP较低;“丝绸之路经济带”涵盖的中亚、西亚、东欧等地区人口密度小,经济相对发达。(2)“一带一路”沿线国家未来人口和经济整体呈增长趋势,但不同的社会经济发展政策对人口经济变化有重大影响。不同的SSPs路径下,2060年人口将比2016年水平增加3.3亿(SSP5)~18.3亿(SSP3),经济总量达到2016年水平的3.0(SSP3)~6.4倍(SSP5)。人口占全球总量的比重持续减少,经济比重则有所增加。(3)21世纪中期(2051—2060年),“一带一路”沿线国家平均人口密度约95人/km2,GDP约164万美元/km2。不同社会经济发展政策间人口经济分布有一定差异,SSP3路径下大部分国家人口增长迅速,但经济发展缓慢,人均GDP多低于2万美元;SSP5路径下人口相对较少,经济发展迅速,大多数国家人均GDP超过2.5万美元;其他3种路径下人口经济发展介于SSP3和SSP5之间。  相似文献   

4.
Affluence drives the global displacement of land use   总被引:2,自引:0,他引:2  
Increasing affluence is often postulated as a main driver for the human footprint on biologically productive areas, identified among the main causes of biodiversity loss, but causal relationships are obscured by international trade. Here, we trace the use of land and ocean area through international supply chains to final consumption, modeling agricultural, food, and forestry products on a high level of resolution while also including the land requirements of manufactured goods and services. In 2004, high-income countries required more biologically productive land per capita than low-income countries, but this connection could only be identified when land used to produce internationally traded products was taken into account, because higher-income countries tend to displace a larger fraction of land use. The equivalent land and ocean area footprint of nations increased by a third for each doubling of income, with all variables analyzed on a per capita basis. This increase came largely from imports, which increased proportionally to income. Export depended mostly on the capacity of countries to produce useful biomass, the biocapacity. Our analysis clearly shows that countries with a high biocapacity per capita tend to spare more land for nature. Biocapacity per capita can be increased through more intensive production or by reducing population density. The net displacement of land use from high-income to low-income countries amounted to 6% of the global land demand, even though high-income countries had more land available per capita than low-income countries. In particular, Europe and Japan placed high pressure on ecosystems in lower-income countries.  相似文献   

5.
Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health. In particular fish species, which are strongly adapted to a certain level of flow variability will be sensitive to future changes in flow regime. In addition, all freshwater fish species are exotherms, and increasing water temperatures will therefore directly affect fishes’ biochemical reaction rates and physiology. To assess climate change impacts on large-scale freshwater fish habitats we used a physically-based hydrological and water temperature modelling framework forced with an ensemble of climate model output. Future projections on global river flow and water temperature were used in combination with current spatial distributions of several fish species and their maximum thermal tolerances to explore impacts on fish habitats in different regions around the world. Results indicate that climate change will affect seasonal flow amplitudes, magnitude and timing of high and low flow events for large fractions of the global land surface area. Also, significant increases in both the frequency and magnitude of exceeding maximum temperature tolerances for selected fish species are found. Although the adaptive capacity of fish species to changing hydrologic regimes and rising water temperatures could be variable, our global results show that fish habitats are likely to change in the near future, and this is expected to affect species distributions.  相似文献   

6.
Micronutrient deficiencies constitute a pressing public health concern, especially in developing countries. As a dense source of bioavailable nutrients, aquatic foods can help alleviate such deficiencies. Developing aquaculture that provides critical micronutrients without sacrificing the underlying environmental resources that support these food production systems is therefore essential. Here, we address these dual challenges by optimizing nutrient supply while constraining the environmental impacts from aquaculture. Using life cycle assessment and nutritional data from Indonesia, a top aquaculture producer, we sought to identify aquaculture systems that increase micronutrient supplies and reduce environmental impacts (e.g., habitat destruction, freshwater pollution, and greenhouse gas emissions). Aquaculture systems in Indonesia vary more by environmental impacts (e.g. three order of magnitude for fresh water usage) than by nutritional differences (approximately ± 50% differences from mean relative nutritional score). Nutritional-environmental tradeoffs exist, with no single system offering a complete nutrition-environment win–win. We also find that previously proposed future aquaculture paths suboptimally balance nutritional and environmental impacts. Instead, we identify optimized aquaculture production scenarios for 2030 with nutrient per gram densities 105–320% that of business-as-usual production and with environmental impacts as low as 25% of those of business-as-usual. In these scenarios Pangasius fish (Pangasius hypophthalmus) ponds prove desirable due to their low environmental impacts, but average relative nutrient score. While the environmental impacts of the three analyzed brackish water systems range from average to high compared to other aquaculture systems, their nutritional attributes render them necessary when maximizing all nutrients except vitamin A. Common carp (Cyprinus carpio) ponds also proved essential in maximizing zinc and omega n-3, while Tilapia (Oreochromis niloticus) cages were necessary in optimizing the production of calcium and vitamin A. These optimal aquaculture strategies also reduce business-as-usual demand for wild fish-based feed by 0–30% and mangrove expansion by 0–75% with no additional expansion into inland open waters and freshwater ponds. As aquaculture production expands globally, optimization presents a powerful opportunity to reduce malnutrition rates at reduced environmental impacts. The proposed reorientation promotes UN sustainable development goals 2 (zero hunger), 3 (health), 13 (climate action) and 14 (life under water) and requires concerted and targeted policy changes.  相似文献   

7.
Sudden disruptions, or shocks, to food production can adversely impact access to and trade of food commodities. Seafood is the most traded food commodity and is globally important to human nutrition. The seafood production and trade system is exposed to a variety of disruptions including fishery collapses, natural disasters, oil spills, policy changes, and aquaculture disease outbreaks, aquafeed resource access and price spikes. The patterns and trends of these shocks to fisheries and aquaculture are poorly characterized and this limits the ability to generalize or predict responses to political, economic, and environmental changes. We applied a statistical shock detection approach to historic fisheries and aquaculture data to identify shocks over the period 1976–2011. A complementary case study approach was used to identify possible key social and political dynamics related to these shocks. The lack of a trend in the frequency or magnitude of the identified shocks and the range of identified causes suggest shocks are a common feature of these systems which occur due to a variety, and often multiple and simultaneous, causes. Shocks occurred most frequently in the Caribbean and Central America, the Middle East and North Africa, and South America, while the largest magnitude shocks occurred in Asia, Europe, and Africa. Shocks also occurred more frequently in aquaculture systems than in capture systems, particularly in recent years. In response to shocks, countries tend to increase imports and experience decreases in supply. The specific combination of changes in trade and supply are context specific, which is highlighted through four case studies. Historical examples of shocks considered in this study can inform policy for responding to shocks and identify potential risks and opportunities to build resilience in the global food system.  相似文献   

8.
基于生产与消费视角的CO2环境库茨涅兹曲线的实证研究   总被引:3,自引:0,他引:3  
 基于生产和消费视角,对人均GDP和单位GDP的CO2排放之间的内在关系进行了实证分析。对1990-2004年44个国家的人均GDP与生产型和消费型的单位GDP的CO2排放进行面板数据的单位根检验和协整分析,在此基础上,对CO2环境库茨涅兹曲线(EKC)进行模拟。结果显示:无论是从生产视角还是从消费视角,单位GDP的CO2排放量都具有显著的倒"U"形状,符合环境库茨涅兹曲线特征。但对于多数发展中国家,消费型单位GDP的CO2排放量总是低于生产型单位GDP的CO2排放量,表明多数发展中国家在国际贸易中存在着内涵CO2排放的净出口,这对从生产角度核算国家温室气体排放体系提出了挑战。最后,分析了CO2环境库茨涅兹曲线对中国应对气候变化的启示。  相似文献   

9.
基于生产和消费视角,对人均GDP和单位GDP的CO2排放之间的内在关系进行了实证分析。对1990-2004年44个国家的人均GDP与生产型和消费型的单位GDP的CO2排放进行面板数据的单位根检验和协整分析,在此基础上,对CO2环境库茨涅兹曲线(EKC)进行模拟。结果显示:无论是从生产视角还是从消费视角,单位GDP的CO2排放量都具有显著的倒"U"形状,符合环境库茨涅兹曲线特征。但对于多数发展中国家,消费型单位GDP的CO2排放量总是低于生产型单位GDP的CO2排放量,表明多数发展中国家在国际贸易中存在着内涵CO2排放的净出口,这对从生产角度核算国家温室气体排放体系提出了挑战。最后,分析了CO2环境库茨涅兹曲线对中国应对气候变化的启示。  相似文献   

10.
Extreme summers of Europe are usually affected by blocking highs that shift between Western and Eastern Europe to cause regional variations in the surface temperature anomalies. Generally, the blocking high induces a regional temperature dipole with poles of warm and cold anomalies on two sides of Europe. The extreme summers of Western Europe, when the Eastern Europe is colder than normal, are usually associated with the teleconnections arising from positive Indian Ocean Dipole (IOD) events. In contrast, analogous warm events in Eastern Europe are usually associated with La Niña. The western Pacific conditions that prevail during the turnaround phase of El Niño to La Niña are found to be responsible for developing the extreme Eastern Europe events. The role of North Atlantic Oscillation (NAO) is not blatant for the Eastern Europe summers though it has a weaker influence on Western Europe summers for which IOD plays a dominant role: The seasonal July–August correlation for Western Europe temperature with IOD index is higher than that with the NAO index. The teleconnections for both types of extremes are associated with a Rossby wavetrain that travel around the globe to reach the Europe. This circumglobal teleconnection is largely determined by the location of the tropospheric heat source. For Western Europe warm events, major contributions come from the atmospheric convections/diabatic heating over northwest India and southern Pakistan. For the Eastern Europe events, the convections over northwest Pacific, south of Japan, are found to project the signals on to the mid-latitude wave-guide. These patterns of teleconnection are so robust that those can be seen on daily to seasonal time-scales of atmospheric anomalies. The wavetrains are found to set-in a couple of weeks prior to the development of blocking highs and extreme hot conditions over Europe.  相似文献   

11.
Agricultural land use to meet the demands of a growing population, changing diets, lifestyles and biofuel production is a significant driver of biodiversity loss. Globally applicable methods are needed to assess biodiversity impacts hidden in internationally traded food items. We used the countryside species area relationship (SAR) model to estimate the mammals, birds, amphibians and reptiles species lost (i.e. species ‘committed to extinction’) due to agricultural land use within each of the 804 terrestrial ecoregion. These species lost estimates were combined with high spatial resolution global maps of crop yields to calculate species lost per ton for 170 crops in 184 countries. Finally, the impacts per ton were linked with the bilateral trade data of crop products between producing and consuming countries from FAO, to calculate the land use biodiversity impacts embodied in international crop trade and consumption. We found that 83% of total species loss is incurred due to agriculture land use devoted for domestic consumption whereas 17% is due to export production. Exports from Indonesia to USA and China embody highest impacts (20 species lost at the regional level each). In general, industrialized countries with high per capita GDP tend to be major net importers of biodiversity impacts from developing tropical countries. Results show that embodied land area is not a good proxy for embodied biodiversity impacts in trade flows, as crops occupying little global area such as sugarcane, palm oil, rubber and coffee have disproportionately high biodiversity impacts.  相似文献   

12.
Fisheries and aquaculture are important sources of food for hundreds of millions of people around the world. World fish production is projected to increase by 15% in the next 10 years, reaching around 200 million tonnes per year. The main driver of this increase will be based on fish farming management in developing countries. In Brazil, fish farming is increasing due to the climate conditions and large supply of water resources, with the production system based on Nile tilapia (Oreochromis niloticus) farming in reservoirs. Inland waters like reservoirs are a natural source of methane (CH4) to the atmosphere. However, knowledge of the impact from intensive fish production in net cages on CH4 fluxes is not well known. This paper presents in situ measurements of CH4 fluxes and dissolved CH4 (DM) in the Furnas Hydroelectric Reservoir in order to evaluate the impact of fish farming on methane emissions. Measurements were taken in a control area without fish production and three areas with fish farming. The overall mean of diffusive methane flux (DMF) (5.9?±?4.5 mg CH4 m?2 day?1) was significantly lower when compared to the overall mean of bubble methane flux (BMF) (552.9?±?1003.9 mg CH4 m?2 day?1). The DMF and DM were significantly higher in the two areas with fish farming, whereas the BMF was not significantly different. The DMF and DM were correlated to depth and chlorophyll-a. However, the low production of BMF did not allow the comparison with the limnological parameters measured. This case study shows that CH4 emissions are influenced more by reservoir characteristics than fish production. Further investigation is necessary to assess the impact of fish farming on the greenhouse gas emissions.  相似文献   

13.
Undernutrition, obesity, climate change, and freshwater depletion share food and agricultural systems as an underlying driver. Efforts to more closely align dietary patterns with sustainability and health goals could be better informed with data covering the spectrum of countries characterized by over- and undernutrition. Here, we model the greenhouse gas (GHG) and water footprints of nine increasingly plant-forward diets, aligned with criteria for a healthy diet, specific to 140 countries. Results varied widely by country due to differences in: nutritional adjustments, baseline consumption patterns from which modeled diets were derived, import patterns, and the GHG- and water-intensities of foods by country of origin. Relative to exclusively plant-based (vegan) diets, diets comprised of plant foods with modest amounts of low-food chain animals (i.e., forage fish, bivalve mollusks, insects) had comparably small GHG and water footprints. In 95 percent of countries, diets that only included animal products for one meal per day were less GHG-intensive than lacto-ovo vegetarian diets (in which terrestrial and aquatic meats were eliminated entirely) in part due to the GHG-intensity of dairy foods. The relatively optimal choices among modeled diets otherwise varied across countries, in part due to contributions from deforestation (e.g., for feed production and grazing lands) and highly freshwater-intensive forms of aquaculture. Globally, modest plant-forward shifts (e.g., to low red meat diets) were offset by modeled increases in protein and caloric intake among undernourished populations, resulting in net increases in GHG and water footprints. These and other findings highlight the importance of trade, culture, and nutrition in diet footprint analyses. The country-specific results presented here could provide nutritionally-viable pathways for high-meat consuming countries as well as transitioning countries that might otherwise adopt the Western dietary pattern.  相似文献   

14.
Climate change impacts on fish catch in the major fishing areas in the world oceans using a new method for forecasting of fish catch is presented with probability statements. The data on historical behaviour of surface water temperature and fish catches were analyzed and processed to assess the dynamics of spatial temperature distribution and fish catches for the world oceans. An analysis shows that the species diversity of fish catch does not change significantly with time and hence the total fish catch was used as the main dynamic variables, practically without loss of information about the dynamic properties of the system. A predictor was constructed to predict the dynamics of fish catch for new values of four moments for a future temperature distribution and the predictor’s power was estimated with a probability statement. Based on the predicted temperatures for the years 2000–2100, the fish catches in the Pacific, Atlantic and Indian Oceans have been predicted with a probability statement.  相似文献   

15.
Rethinking the Kyoto Emissions Targets   总被引:1,自引:0,他引:1  
The overall targets for greenhouse gas emissions of the Kyoto Protocol are not based on a specific objective for the future world climate. Moreover, the allocations of emissions restrictions among countries do not have a principled logic and impose arbitrary differences in costs. Calculations arepresented of the costs of alternative guidelines for emissions restrictions, each of which has a plausible ethical basis: equal per capita reductions, equal country shares in reductions, equalized welfare costs, and emulation of the United Nations budget allocations. All of these would result in far lower total costs of reaching the Kyoto targets. The alternatives would also eliminate the wholly capricious accommodations given to the Former Soviet Union and Eastern Europe. The lower cost alternativeswould permit the Annex B countries to make unequivocal commitments for cost reimbursement to the non-Annex B countries to induce them to participate in emissions reductions. Everyone would gain from that.  相似文献   

16.
基于柯布-道格拉斯生产函数与自回归移动平均模型(ARIMA)构建出一个GDP综合预测模型,并且考虑十九大全面建成小康社会与实现共同富裕的精神与国家关于技术、资本、劳动力等方面的区域平衡发展战略调整模型的参数,计算了2016—2050年中国分省的GDP总量与人均GDP,进一步通过计算省区间人均GDP的基尼系数来分析省区协调发展的水平。研究结果表明,在考虑省区协调发展时,各省区在2016—2050年间的GDP总量与人均GDP的差距逐渐缩小,省区间人均GDP的基尼系数将从2015年的0.219下降到2030年的0.176和2050年的0.137,未来区域间发展不均衡的态势在实现经济稳步增长同时可以得到缓解。  相似文献   

17.
This paper analyses factors that contributed to the evolution of SO2, NOx and CO2 emissions in Europe from 1960 to 2010. Historical energy balances, along with population and economic growth data, are used to quantify the impacts of major determinants of changing emission levels, including energy intensity, conversion efficiency, fuel mix, and pollution control. Time series of emission levels are compared for countries in Western and Eastern Europe, throwing light on differences in the importance of particular emission-driving forces. Three quarters of the decline in SO2 emissions in Western Europe resulted from a combination of reduced energy intensity and improved fuel mix, while dedicated end-of-pipe abatement measures played a dominant role in the reduction of NOx emissions. The increase in atmospheric emissions in Eastern Europe through the mid-1990s was associated with the growth of energy-intensive industries, which off-setted the positive impact of better fuel quality and changes in fuel mix. A continuous decrease in energy intensity and higher conversion efficiencies have been the main factors responsible for the moderate rate of growth of European CO2 emissions.  相似文献   

18.
Anthropogenic climate change is affecting the environment of all oceans, modifying ocean circulation, temperature, chemistry and productivity. While evidence for changes in physical signals is often distinct, impacts on fishes inhabiting oceanic systems are not easily identified, and therefore, quantification of responses is less common. Correctly attributing changes associated with a changing climate from other drivers is important for the implementation of effective harvest and management strategies and for addressing associated socio-economic impacts, particularly for countries highly dependent on oceanic resources. Data supporting investigation of responses of oceanic species to climate impacts include fisheries catch, fisheries-independent surveys, and conventional and electronic tagging data. However, there are a number of challenges associated with detecting climatic responses with these data, including (i) data collection costs (ii) small sample sizes (iii) limited time series relative to temporal scales at which environmental variability occurs, (iv) changing fisher and fisheries behavior due to non-climate drivers and (v) changes in population dynamics due to natural climate variability and non-climate drivers. We highlight potential biases and suggest strategies that should be considered when using oceanic fish and fisheries data in the evaluation of climate change impacts. Consideration of these factors is important when assessing variability in exploited species and designing management responses to climate or fisheries threats.  相似文献   

19.
IPCC第五次评估报告认为,受气候变化影响,许多生物种及生态系统已经发生显著变化,未来这些变化还将继续。气候变化和人类活动的共同作用将对21世纪的陆地生态系统和内陆水系统产生重要影响,大部分陆地和淡水物种灭绝的风险都将增加,部分地区可能会发生不可逆转的变化。未来仅依靠生态系统自身的适应能力将不足以应对这些变化,需要辅以适应措施帮助生态系统适应气候变化。海岸带系统和低洼地区除了受气候变化的影响,还受到人类活动的强烈影响,并且影响的方式和结果因地而异。预计到2100年,全球平均海平面将上升0.28~0.98 m,相对海平面上升差异较大。到2100年,数以亿计的人将受到沿海洪水的影响。未来海岸带地区适应的相对成本会有很大的区域差异。在全球尺度上,采取防御措施取得的效益仍要高于不作为而付出的社会经济成本。发达国家比发展中国家具有更强的适应气候变化能力,可持续发展的气候恢复力也更大。  相似文献   

20.
Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20 years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land–sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land–sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号