首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2000,15(7):1003-1018
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (<10%) of colloidal Al, Fe and Zn from the water column.  相似文献   

2.
This study deals with the weathering processes operating at the scale of a small catchment (Nsimi-Zoetele, Cameroon) and is focused on the role of organic colloids on mineral weathering and transport of elements in natural waters. Samples of river, spring and groundwaters from Nsimi-Zoetele were filtered through membranes of decreasing pore size (0.22 μm, 0.025 μm, or: 300,000 Da, 5000 Da) to separate colloidal fractions from the truly dissolved one. Major and trace elements and dissolved organic carbon (DOC) were analysed in each fraction. Two kinds of waters can be distinguished in the catchment: clear and coloured waters. Clear waters exhibit low concentrations of major and trace elements and DOC. Elements are carried in these solutions in a true dissolved form except Al and rare earth elements (REEs). By contrast, the higher abundances of Al, Fe and trace elements in coloured waters are controlled by the colloidal fraction. Thermodynamic equilibrium calculations show that clear waters are in equilibrium with kaolinite and iron oxi-hydroxide which are major minerals in the weathered soil. For coloured waters, the aqueous speciation of Ca, Mg, Cu, Fe, Al, La and Th was calculated taking into account the complexes with humic acids. Speciation calculations for Cu, Fe, Al, La, Th show a strong complexation with humic acids, in good agreement with the results of the filtration experiments. By contrast, although filtration experiments show a strong control of major cations by organic matter (for example 75% for Ca), speciation calculations reveal that their complexes with humic ligands do not exceed a few percent of total dissolved elements. This discrepancy is explained as an artefact induced by the organic colloids and occurring during the filtration procedure. Finally, both filtration experiments and speciation calculations show that organic matter plays an important role in natural DOC-rich waters. Organic acids increase significantly the dissolution rates of silicates and oxi-hydroxides and thus the amounts of solutes and of complexed elements leaving the catchment.  相似文献   

3.
This paper presents a hydrogeochemical modeling code HYDROS, which combines the multi-component transport model with equilibrium speciation module MINTEQA2. The processes of adsorption, aqueous speciation and mineral precipitation/dissolution are represented in the model. The numerical model uses a sequential iterative approach for solving the solute transport and the equilibrium geochemistry modules. Further the transport part is solved using an operator split approach wherein a finite volume method is used for solving the advective equations while a classical finite difference method is employed for solving the dispersive equations. The model performance is evaluated by comparing it with MINTOX for a literature problem. HYDROS is then applied to the case study of the transfer of transition metals with organic colloids in the swamp groundwater system of the experimental Nsimi watershed, representative of the humid tropical ecosystem of the South Cameroon Plateau. Field observations at the site swamp system suggest that the carbon is mainly transferred as organic colloids (i.e., dissolved organic carbon) produced by the slow biodegradation of the swamp organic matter. Using HYDROS, the behaviour of Al(III) and Fe(III) elements in the base flow system is simulated during inter rain events of a short rainy season (May–June 1996). The elemental time-series for Al, Fe, Cl, pH compare well with the simulation results. The colloids are found to have a strong impact on the mobilization and transfer of Al(III) and Fe(III), which are considered to have low mobility in weathering environment.  相似文献   

4.
Asymmetric-Flow Field-Flow Fractionation (AsFlFFF) coupled to an inductively coupled plasma-mass spectrometer (ICP-MS) was used to determine whether colloidal As exists in mine tailings from abandoned Au mine sites in Nova Scotia. Using this technique, the chemical composition and the size of the colloidal material was determined. Tailings samples were collected from the sites and leachates were analyzed. The resulting fractograms showed the presence of colloidal As. Arsenic co-elutes with Fe and Al suggesting that the As is associated with colloids containing these elements. The colloidal material present in the samples has a calculated median size of 7 nm. The leachates were also analyzed for totalAs, Fe and Al using ICP-MS. The colloidal fraction was determined to account for approximately 20% of the total dissolved As present in these samples. Dissolved As concentrations at the selected mine sites are very high and the arbitrary cutoff for dissolved still incorporates colloidal material. Therefore. it is important to distinguish between truly dissolved and colloidal As as the speciation will affect the toxicity and mobility of As at these locations.  相似文献   

5.
The weathering of a late Tertiary volcanic ash near Jackson, Wyoming, was studied by sampling water percolating through the ash with suction lysimeters, and by examination of the associated solid phases. Soluble organic compounds derived from vegetation control the release and transport of solutes by complexing Al and Fe, and by causing low pH values. The concentrations of Na, K, Ca, and Mg, as well as those of Al and Fe correlate with the dissolved organic carbon concentrations (DOC) and follow an annual cycle with a maximum in spring. DOC concentrations averaged 5O mg C per liter, and values as high as 260 mg/l were observed. Al and Fe concentrations ranged as high as 5 mg/l. The dissolved organic matter was largely in the form of humic acids, although minor amounts of oxalate, acetate, and formate were also present. The pH of the percolating waters ranged from 4.3 to 6.5 with a mean of 5.2.During laboratory weathering experiments with the same ash in the absence of dissolved organic compounds, pH values ranged from 7.3 to 9.5, dissolved Al and Fe concentrations were below the detection limit, and there was little resemblance between the compositions of the solutions and the compositions observed in the field. Any model attempting to describe weathering in a comparable setting must incorporate biological mechanisms as the dominant controls.  相似文献   

6.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   

7.
Size fractionation of ~40 major and trace elements (TE) in peat soil solutions from the Tverskaya region (Russia) has been studied using frontal filtration and ultrafiltration through a progressively decreasing pore size (5, 2.5, 0.22 μm, 100, 10, 5, and 1 kD) and in situ dialysis through 6–8 and 1 kD membranes with subsequent analysis by ICP-MS. In (ultra) filter-passed permeates and dialysates of soil solutions, Fe, Al, and organic carbon (OC) are well correlated, indicating the presence of mixed organo-mineral colloids. All major anions and silica are present in “dissolved” forms passed through 1 kD membrane. According to their behavior during filtration and dialysis and association with mineral or organic components, three groups of elements can be distinguished: (i) species that are weakly affected by size separation operations and largely (>50–80%) present in the form of dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, As, Mn) with some proportion of small (1–10 kD) organic complexes (Ca, Mg, Sr, Ba), (ii) biologically essential elements (Co, Ni, Zn, Cu, Cd) mainly present in the fraction smaller than 1 kD and known to form strong organic complexes with fulvic acids, and, (iii) elements strongly associated with aluminum, iron and OC in all ultrafiltrates and dialysates with 30–50% being concentrated in large (>10 kD) colloids (Ga, Y, REEs, Pb, Cd, V, Nb, Sn, Ti, Zr, Hf, Th, U). For most trace metals, the proportion in the colloidal fraction correlates with their first hydrolysis constant. This implies a strong control of negatively charged oxygen donors present in inorganic/organic colloids on TE distribution between aqueous solution and colloid particles. It is suggested that these colloids are formed during plant uptake of Al, Fe, and TE from mineral matrix of deep soil horizons and their subsequent release in surface horizons after litter degradation and oxygenation on redox or acid/base fronts. Dissolved organic matter stabilizes Al/Fe colloids and thus enhances trace elements transport in soil solutions.  相似文献   

8.
海洋胶体与痕量金属的相互作用   总被引:6,自引:0,他引:6  
痕量金属的胶体结合态是海洋中金属的一种相当普遍的存在形式。胶体与痕量金属之间的相互作用影响着痕量金属在海水中的形态、迁移、生物可利用性及其归宿。总结了海洋胶体态金属的存在及其显著性,概述了胶体对金属在河口混合过程中行为的影响,并简要讨论了胶体在海水中痕量金属的固液相分配中的作用。  相似文献   

9.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


10.
Changes in size distribution and elemental composition of 0.5-50 nm fresh water colloids during estuarine mixing have been studied by in-laboratory mixing of natural creek water and synthetic seawater, followed by size fractionation with Asymmetrical Flow Field-Flow Fractionation, and online elemental quantification by High-Resolution ICPMS. At least two types of colloids were present in the studied size region; 0.5-3 nm fluorescent dissolved organic matter (FDOM), and >3 nm colloids that were rich in Fe and colored dissolved organic matter (CDOM). Most trace elements were associated in different proportions to these two populations of colloids. Following mixing with synthetic seawater, the >3 nm Fe-rich colloids and CDOM were extensively removed from the studied size region by salt induced aggregation. The degree of removal with increasing salinity was greatest below 2.5‰ salinity, continued to a lesser degree between 2.5‰ and 15‰ salinity, above which only very small additional removal could be distinguished. At 25‰ salinity, the Fe concentration in the 0.5-50 size region had been reduced down to 15% of its original value in freshwater, while the amount of CDOM had been reduced to 55%. On the contrary, the concentration of the 0.5-3 nm FDOM was unchanged by the increased concentration of sea salt. Therefore, colloidally associated Al, P, Co, Cu, Zn, Ce, Lu and Pb were removed from the 0.5-50 nm size region according to their relative distributions between the FDOM and the Fe-rich colloids. Consequently, at 25‰ salinity, the 0.5-50 nm concentrations of Al, Mn, P and Pb, (mainly associated with the Fe-rich colloids) had been reduced down to 13-26 % of their values in freshwater, while the concentrations of Co and Cu (with higher preferences for FDOM) were less reduced, down to 46% and 57%, respectively. Changes in the elemental composition of the remaining colloidal matter were observed, the most pronounced were increased contents of P, Al and Pb in Fe-rich colloidal matter of medium size (∼3-15 nm) and increased Pb content in Fe-rich colloidal matter of larger size (∼5-50 nm).  相似文献   

11.
Prediction of colloid release and transport as affected by reactive species remains a significant challenge for field applications. In this paper, we report experimental and modeling results of ferrihydrite colloid release under the influence of citrate species. Using a 3-plane surface complexation model, equilibrium constants were obtained for the three proposed inner-sphere complexes by fitting a citrate adsorption isotherm on ferrihydrite at pH 4, and a pH adsorption envelop with 0.64 mM citrate. The constants were used in a reactive transport model for simulating reaction fronts of dissolved species during injection of citrate in ferrihydrite-coated quartz columns. Simulation results show that sorption alone may not adequately describe the breakthrough curves. Inclusions of ferrihydrite dissolution and re-adsorption of Fe(III) improve the prediction of dissolved species transport. Additionally, matrix diffusion may be needed for improved prediction. For the release of colloidal iron oxides it was shown that both oxide dissolution and interfacial repulsion controlled the process during complete breakthrough. However, the peak release of colloids, which occurred during the actual breakthrough of dissolved species, was mainly brought about by electric double layer forces. These particles underwent detachment-deposition-detachment cycles along the flow path, and emerged in the effluent with the major reaction front. To quantitatively predict colloid release, a semi-empirical linear correlation was established, linking the calculated electric potential to experimental colloid release rates. The model may be applied to the prediction and scaling of aquifer remediation studies involved in the injection of organic ligands to mobilize particle bound contaminants.  相似文献   

12.
The estuarine mixing of dissolved Fe, Cu, Ni, Si and surface-active organic matter has been investigated in the Taieri Estuary, New Zealand, simultaneously with measurements of the electrokinetic charge on colloidal particles. Dissolved Fe showed almost quantitative removal from solution characteristic of the coagulation of iron-containing colloids by seawater electrolytes. Surface active organic matter behaved conservatively, indicating that a relatively constant fraction of estuarine organic matter is surface active, but that organic species associated with iron during removal are a minor fraction. Results for Cu, Ni and Si were scattered but offered no evidence for gross removal during estuarine mixing. The negative charge on suspended colloids was not reversed by adsorption of seawater cations, but remained uniformly negative throughout the salinity range, decreasing sharply in magnitude during the first few %. salinity.  相似文献   

13.
Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH < 4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH > 5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption.  相似文献   

14.
Polychlorinated biphenyls (PCBs) are the main constituents of clophen (the liquid of the electric transformers and capacitors) and have been characterized as potential human carcinogens. PCBs can be a hazardous contaminant of soil and groundwater. We used the mathematical model variably saturated 2D flow and transport (VS2DT model) to simulate the transport of PCBs from the soil surface to groundwater for a time period of 30 years. We also used a mathematical model to simulate the colloid-facilitated PCB transport, under saturated flow conditions. The results showed that PCBs dissolved in water cannot be transported to large depths in unsaturated soils, because of their strong sorption onto soil and low solubility in water. For soils with very low or no organic matter content, PCB transport is much faster and the probability of groundwater contamination is much higher. PCBs can partition to colloids originating from dissolved organic matter in groundwater. Colloid-facilitated PCB transport is faster compared to PCB transport in aqueous solution with no colloids present.  相似文献   

15.
Due to the importance of colloids in regulating element transport and mobility in aquifers, As distribution in the colloidal fraction needs to be identified in high As groundwaters. Groundwater samples were filtered in the field through a progressively decreasing pore size (0.45 μm, 100, 30, 10, 5 kDa) using a filtration technique under a N2 atmosphere. Major and trace elements and organic C (OC) were measured in (ultra)filtrates. The studied groundwater samples have typical physio-chemical characteristics of the basin waters. Declines in concentrations of alkali (Na, K), alkaline-earth (Mg, Ca, Sr, Ba) elements, Mo, Si and Se during ultrafiltration are smaller relative to other elements. Arsenic, Cu, Cr, U and V are generally about 30% lower in 5 kDa ultrafiltrates in comparison with 0.45 μm filtrates. Around 50% of Fe, OC and Al are bound to colloids with grain size between 5 kDa and 0.45 μm. Two types of colloids, including large-size Fe colloids and small-size organic colloids, have been identified. Results indicate that As would be more likely to be associated with small-size organic colloids than Fe colloids. SEM images and EDS analysis and synchrotron XRF analyses confirm the association of As with NOM with molecular weights of 5-10 kDa. The better correlation between As(V) and OC in the 5-10 kDa fraction indicates that the small-size organic colloids have a greater affinity for As(V) than As(III). Arsenic associated with organic complexes may not be immobilized by adsorption, and, therefore, easily transported in the aquifer. Thus, the presence of As-containing colloidal complexes in high As groundwaters must be considered in the modeling of As transport in the aquifers.  相似文献   

16.
胶体在地下水中的环境行为特征及其研究方法探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
在收集查阅国内外已有研究资料的基础上,对地下水中胶体稳定性、迁移机制以及模拟预测方法进行了详细归纳和总结。研究表明,胶体稳定性主要受自身理化性质和水文地球化学条件的影响,其受控于胶体粒径、形态、电势电位以及地下水的pH、离子强度等条件。胶体在多孔介质中的迁移机制主要表现为胶体沉积和形变阻塞,其中针对胶体稳定性的差异性,胶体沉积过程分别表现为表面封阻和过滤熟化。目前有关胶体在地下水中迁移的模拟技术已发展得日益成熟,但结合多孔介质非均质性和胶体化学性质非均质性的数学模型还需进一步探讨。  相似文献   

17.
《Applied Geochemistry》1995,10(3):285-306
Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the <60-μm fraction of the bed sediment. The highest concentrations of metals in water, colloids, and bed sediments occurred just downstream from California Gulch. Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids for about 10 km downstream from California Gulch. Farther downstream, concentrations of Fe and Cu in tributary sediments mask the signal of mining inflows. These results indicate that colloids indeed influence the occurrence and transport of metals in rivers affected by mining.  相似文献   

18.
Natural colloids have a potential role in facilitating the transport of radionuclides in groundwater. To assess the role of mobile colloidal phases in radionuclide transport, characterization of colloids for size, size distribution, zeta potential, surface charge and elemental composition is required. Groundwater samples were collected from 12 borewells in the study area and were characterized with respect to physicochemical parameters. Water quality parameters such as pH, temperature, specific conductance, TDS and dissolved O2 were measured in situ. Based on salinity, two groundwater types were identified in the study area: (1) freshwater type and (2) brackish type. Laboratory and field-scale turbidity measurements in addition to quantitative analysis of major ions were carried out. It was observed that the colloid concentrations are reduced at higher salinity. Zetasizer, particle size analyzer, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction techniques were used to characterize the colloidal particles in groundwater. Colloids were present in all the groundwater samples, the concentration varying between 0.05 and 6 mg/L. Colloid concentration was greater in wells with low ionic strength and the number of colloidal particles varied between 3 × 109 and 4 × 1011 particles/L. The average colloid size varied between 200 and 350 nm for various samples. The zeta potential of the colloidal particles varied between −25.5 and –34.0 mV. SEM analysis of colloidal particles revealed the presence of clays particularly kaolinite and that the mineral composition of colloids reflects the mineralogy of the aquifer. For proper risk assessment and remediation studies, the role of colloids in radionuclide transport assumes greater importance. This study highlights the need for, and relevance of, detailed colloid characterization to assess its role in the migration of radionuclides from near surface disposal facilities.  相似文献   

19.
High concentrations of metals in organic matter can inhibit decomposition and limit nutrient availability in ecosystems, but the long-term fate of metals bound to forest litter is poorly understood. Controlled experiments indicate that during the first few years of litter decay, Al, Fe, Pb, and other metals that form stable complexes with organic matter are naturally enriched by several hundred percent as carbon is oxidized. The transformation of fresh litter to humus takes decades, however, such that current datasets describing the accumulation and release of metals in decomposing organic matter are timescale limited. Here we use atmospheric 210Pb to quantify the fate of metals in canopy-derived litter during burial and decay in coniferous forests in New England and Norway where decomposition rates are slow and physical soil mixing is minimal. We measure 210Pb inventories in the O horizon and mineral soil and calculate a 60-630 year timescale for the production of mobile organo-metallic colloids from the decomposition of fresh forest detritus. This production rate is slowest at our highest elevation (∼1000 m) and highest latitude sites (>63°N) where decomposition rates are expected to be low.We calculate soil layer ages by assuming a constant supply of atmospheric 210Pb and find that they are consistent with the distribution of geochemical tracers from weapons fallout, air pollution, and a direct 207Pb application at one site. By quantifying a gradient of organic matter ages with depth in the O horizon, we describe the accumulation and loss of metals in the soil profile as organic matter transforms from fresh litter to humus. While decomposition experiments predict that Al and Fe concentrations increase during the initial few years of decay, we show here that these metals continue to accumulate in humus for decades, and that enrichment occurs at a rate higher than can be explained by quantitative retention during decomposition alone. Acid extractable Al and Fe concentrations are higher in the humus layer of the O horizon than in the mineral soil immediately beneath this layer: it is therefore unlikely that physical soil mixing introduces significant Al and Fe to humus. This continuous enrichment of Al and Fe over time may best be explained by the recent suggestion that metals are mined from deeper horizons and brought into the O horizon via mycorrhizal plants. In sharp contrast to Al and Fe, we find that Mn concentrations in decomposing litter layers decrease exponentially with age, presumably because of leaching or rapid uptake, which may explain the low levels of acid extractable Mn in the mineral soil. This study quantifies how metals are enriched and lost in decomposing organic matter over a longer timescale than previous studies have been able to characterize. We also put new limits on the rate at which metals in litter become mobile organo-metallic complexes that can migrate to deeper soil horizons or surface waters.  相似文献   

20.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号