首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The purpose of the study was to evaluate the influence of polyvalent cations known to form complexes with natural organic substances on the operational fractionation of dissolved organic matter (DOM) using XAD-8 adsorber resin. Dissolved organic matter solutions from a forest floor were treated with increasing concentrations of polyvalent metal cations (Ca2+, Al3+, Fe3+) at different pH levels. Then the concentrations of total dissolved organic carbon (DOC) and the distribution between hydrophilic and hydrophobic DOC were determined. The concentrations of total DOC decreased slightly when the C/metal ratio was less than 10, especially for Al and Fe. Hydrophilic DOC increased and hydrophobic DOC decreased with increasing concentrations of metal cations. Effects increased in the order Ca<Al<Fe and were more pronounced at low DOC concentrations and high pH values. The reason for the reduction of the DOC concentrations seemed to be the formation of insoluble metal–DOM complexes, while soluble metal–DOM complexes may induce an alteration of the distribution between hydrophilic and hydrophobic DOC. Thus, the polyvalent cations and their concentration need to be considered when DOM fraction distributions, determined with XAD-8 resin, of different waters are compared, especially at low DOC contents and high pH.  相似文献   

2.
This study deals with the weathering processes operating at the scale of a small catchment (Nsimi-Zoetele, Cameroon) and is focused on the role of organic colloids on mineral weathering and transport of elements in natural waters. Samples of river, spring and groundwaters from Nsimi-Zoetele were filtered through membranes of decreasing pore size (0.22 μm, 0.025 μm, or: 300,000 Da, 5000 Da) to separate colloidal fractions from the truly dissolved one. Major and trace elements and dissolved organic carbon (DOC) were analysed in each fraction. Two kinds of waters can be distinguished in the catchment: clear and coloured waters. Clear waters exhibit low concentrations of major and trace elements and DOC. Elements are carried in these solutions in a true dissolved form except Al and rare earth elements (REEs). By contrast, the higher abundances of Al, Fe and trace elements in coloured waters are controlled by the colloidal fraction. Thermodynamic equilibrium calculations show that clear waters are in equilibrium with kaolinite and iron oxi-hydroxide which are major minerals in the weathered soil. For coloured waters, the aqueous speciation of Ca, Mg, Cu, Fe, Al, La and Th was calculated taking into account the complexes with humic acids. Speciation calculations for Cu, Fe, Al, La, Th show a strong complexation with humic acids, in good agreement with the results of the filtration experiments. By contrast, although filtration experiments show a strong control of major cations by organic matter (for example 75% for Ca), speciation calculations reveal that their complexes with humic ligands do not exceed a few percent of total dissolved elements. This discrepancy is explained as an artefact induced by the organic colloids and occurring during the filtration procedure. Finally, both filtration experiments and speciation calculations show that organic matter plays an important role in natural DOC-rich waters. Organic acids increase significantly the dissolution rates of silicates and oxi-hydroxides and thus the amounts of solutes and of complexed elements leaving the catchment.  相似文献   

3.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

4.
Fractionation by ultra-filtration of the dissolved organic material (DOM) in the River Beaulieu, with typical concentrations of dissolved organic carbon (DOC) of 7–8 mg C/l, showed it to be mainly in the nominal molecular weight range of 103–105, with 16–23% of the total DOC in the fraction > 105. The molecular weight distribution of DOM in the more alkaline River Test (average DOC, 2 mg C/l) was similar. In the River Beaulieu water, containing 136–314 βg Fe/l in ‘dissolved’ forms, 90% or more of this Fe was in the nominal molecular weight fraction > 105. Experiments showed that DOM of nominal molecular weight <105 could stabilize Fe(III) in ‘dissolved’ forms. The concentrations of ‘dissolved’ Fe in the river water probably reflect the presence of colloidal Fe stabilized by organic material and this process may influence the apparent molecular weight of the DOM. Dissolved. Mn (100–136 βg/l) in the River Beaulieu was mainly in true solution, probably as Mn(II), with some 30% in forms of molecular weight greater than ca 104.During mi xing in the Beaulieu Estuary, DOC and dissolved Mn behave essentially conservatively. This contrasts with the removal of a large fraction of the dissolved Fe (Holliday and LISS, 1976, Est. Coastal Mar. Sci. 4, 349–353). Concentrations of lattice-held Fe and Mn in suspended particulate material were essentially uniform in the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice held fractions decreased markedly with increase in salinity. For Mn the decrease was linear and could be most simply accounted for by the physical mixing of riverborne and marine participates, although the possibility that some desorption occurs is not excluded. The non-linear decrease in the concentration of non-lattice held Fe in particulates reflected the more complex situation in which physical mixing is accompanied by removal of material from the ‘dissolved’ fraction.  相似文献   

5.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

6.
《Applied Geochemistry》2002,17(5):569-581
This study examined the sorption of trace metals to precipitates formed by neutralization of 3 natural waters contaminated with acid mine drainage (AMD) in the former Ducktown Mining District, Tennessee. The 3 water samples were strongly acidic (pH 2.2 to 3.4) but had distinctively different chemical signatures based on the mole fractions of dissolved Fe, Al and Mn. One sample was Fe-rich (Fe=87.5%, Al=11.3%, and Mn=1.3%), another was Al-rich (Al=79.4%, Mn=18.0%, and Fe=2.5%), and the other was Mn-rich (Mn=51.4%, Al=25.7%, and Fe=22.9%). In addition, these waters had high concentrations of trace metals including Zn (37,700 to 17,400 μg/l), Cu (13,000 to 270 μg/l), Co (1,500 to 520 μg/l), Ni (360 to 75 μg/l), Pb (30 to 8 μg/l), and Cd (30 to 6 μg/l). Neutralization of the AMD-contaminated waters in the laboratory caused the formation of either schwertmannite at pH<4 or ferrihydrite at pH>4. Both phases were identified by XRD analyses of precipitates from the most Fe-rich water. At higher pH values (∼5) Al-rich precipitates were formed. Manganese compounds were precipitated at pH∼8. The removal of trace metals depended on the precipitation of these compounds, which acted as sorbents. Accordingly, the pH for 50% sorption (pH50) ranged from 5.6 to 7.5 for Zn, 4.6 to 6.1 for Cu, 5.4 to 7.7 for Ni, 5.9 to 7.9 for Co, 3.1 to 4.3 for Pb, and 5.5 to 7.7 for Cd. The pH dependence of sorption arose not only because of changes in the sorption coefficients of the trace metals but also because the formation and composition of the sorbent was controlled by the pH, the chemical composition of the water, and the solubilities of the oxyhydroxide-sulfate complexes of Fe, Al, and Mn.  相似文献   

7.
Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been studied. Both pH and DOC concentration play a major role in the speciation of Al in solution. Furthermore, the equilibrium with mineral phases like gibbsite, amorphous Al(OH)3 and imogolite, has been considered. Agricultural and natural land use were expected to have different effects on the pH and DOC concentration, which in turn could influence the total Al concentration and the speciation of Al in groundwater at different depths (phreatic, shallow and deep). An extensive dataset (n = 2181) from the national and some provincial monitoring networks on soil and groundwater quality was used. Land use type and groundwater depth did influence the pH, and Al and DOC concentrations in groundwater samples. The Al concentration ranged from <0.4 μmol L−1 at pH > 7 to 1941 μmol L−1 at pH < 4; highest Al concentrations were found for natural-phreatic groundwater. The DOC concentration decreased and the median pH increased with depth of the groundwater. Natural-phreatic groundwater showed lower pH than the agricultural-phreatic groundwater. Highest DOC concentrations were found for the agricultural-phreatic groundwater, induced by the application of organic fertilizers. Besides inorganic complexation, the NICA-Donnan model was used to calculate Al3+ concentrations for complexation with DOC. Below pH 4.5 groundwater samples were mainly in disequilibrium with a mineral phase. This disequilibrium is considered to be the result of kinetic constraints or equilibrium with organic matter. Log K values were derived by linear regression and were close to theoretical values for Al(OH)3 minerals (e.g. gibbsite or amorphous Al(OH)3), except for natural-phreatic groundwater for which lower log K values were found. Complexation of Al with DOC is shown to be an important factor for the Al concentrations, especially at high DOC concentrations as was found for agricultural-phreatic groundwater.  相似文献   

8.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

9.
《Applied Geochemistry》1998,13(1):31-42
Organic material typically constitutes a substantial volume (∼ 90%) of the low-level radioactive wastes (LLRW) intended for near-surface disposal at Chalk River Laboratories (CRL), Ontario, Canada. These wastes can contain a large variety of organic materials, including paper, cardboard, plastic bags, used clothing, and mop heads. After emplacement in a disposal facility, leaching of the LLRW by water can mobilize inorganic and organic substances, ranging from small molecules such as acetic acid to unidentifiable material of colloidal size range. This study determined the potential for colloid formation produced by LLRW degradation, because colloid-facilitated transport of contaminants could affect the safety performance of a disposal facility.The decomposition of compacted LLRW was simulated by recirculating water in a closed system over several compacted bales of waste to determine the potential composition and colloid content of leachates. Size fractionation of organic matter was performed on leachate samples that had been aged for 18 months to simulate the microbial degradation of organic matter within leachates during migration out of the LLRW disposal facility. The aged leachates contained high concentrations of dissolved organic matter, ranging between 74 and 5074 mg/l as C. In most of the leachates, volatile fatty acids accounted for a significant fraction (up to 81%) of the dissolved organic carbon. Although 5–110 mg/l of organic colloids were observed in leachates, in most cases, the organic colloids made up a very small fraction of the total leached organic carbon. Therefore, since the complexation properties of dissolved and colloidal organics are probably similar, contaminants complexed to organics are most likely to be dissolved and not affected by colloid transport. The leachates also contained significant quantities of Fe and Al, which could potentially precipitate Fe and Al as colloids after oxidation. Although a significant portion of the dissolved Fe may have been produced by the corrosion of the ☐es used to contain the bales, the high Fe concentrations could be representative of leachates from LLRW that contain metallic Fe components. If Fe and Al colloids are stable, stable concentrations in LLRW leachates could be high enough to affect contaminant transport. Therefore, the Fe and Al content of LLRW should be minimized. The concentrations of natural colloids in sandy aquifers, such as those found at CRL are too low to affect contaminant migration significantly.  相似文献   

10.
This paper investigates the mechanisms controlling Sb-leaching from fresh Municipal Solid Waste Incinerator (MSWI) bottom ash, as well as the possibilities of controlling the extent of Sb-leaching by the addition of sorbent minerals to the bottom ash. In alkaline MSWI bottom ash Sb is possibly incorporated in ettringite-like minerals. When weathering/carbonation continues the ettringite dissolves resulting in a mobilisation of Sb. At neutral pH values the leaching of Sb is likely to be controlled by sorption to amorphous Fe/Al-(hydr)oxides. It has been shown that Sb can effectively be removed from solution if salts of Fe(III) or Al(III) are added to the bottom ash. This addition of Fe(III)/Al(III)-salts leads to (1) the in-situ precipitation of Fe/Al-hydroxides and sorption/coprecipitation of contaminants such as Sb, and (2) a lower bottom ash pH and thus an increased affinity of oxyanions for sorption to Fe/Al-(hydr)oxides.  相似文献   

11.
Published experimental data for Al(III) and Fe(III) binding by fulvic and humic acids can be explained approximately by the Humic Ion-Binding Model VI. The model is based on conventional equilibrium reactions involving protons, metal aquo ions and their first hydrolysis products, and binding sites ranging from abundant ones of low affinity, to rare ones of high affinity, common to all metals. The model can also account for laboratory competition data involving Al(III), Fe(III) and trace elements, supporting the assumption of common binding sites. Field speciation data (116 examples) for Al in acid-to-neutral waters can be accounted for, assuming that 60-70 % (depending upon competition by iron, and the chosen fulvic acid : humic acid ratio) of the dissolved organic carbon (DOC) is due to humic substances, the rest being considered inert with respect to ion binding. After adjustment of the model parameter characterizing binding affinity within acceptable limits, and with the assumption of equilibrium with a relatively soluble form of Fe(OH)3, the model can simulate the results of studies of two freshwater samples, in which concentrations of organically complexed Fe were estimated by kinetic analysis.The model was used to examine the pH dependence of Al and Fe binding by dissolved organic matter (DOM) in freshwaters, by simulating the titration with Ca(OH)2 of an initially acid solution, in equilibrium with solid-phase Al(OH)3 and Fe(OH)3. For the conditions considered, Al, which is present at higher free concentrations than Fe(III), competes significantly for the binding of Fe(III), whereas Fe(III) has little effect on Al binding. The principal form of Al simulated to be bound at low pH is Al3+, AlOH2+ being dominant at pH >6; the principal bound form of Fe(III) is FeOH2+ at all pH values in the range 4-9. Simulations suggest that, in freshwaters, both Al and Fe(III) compete significantly with trace metals (Cu, Zn) for binding by natural organic matter over a wide pH range (4-9). The competition effects are especially strong for a high-affinity trace metal such as Cu, present at low total concentrations (∼1 nM). As a result of these competition effects, high-affinity sites in humic matter may be less important for trace metal binding in the field than they are in laboratory systems involving humic matter that has been treated to remove associated metals.  相似文献   

12.
Pore waters were collected from a sea-marginal, hypersaline pond in the Sinai and analyzed for dissolved organic carbon (DOC). The pore water DOC values ranged from 121 to 818 mg 1−1 with maxima between 15 and 54 cm deep. These values are some of the highest observed from recent sediments and probably reflect production via abiotic as well as biotic sources.  相似文献   

13.
The Loihi hydrothermal plume provides an opportunity to investigate iron (Fe) oxidation and microbial processes in a system that is truly Fe dominated and distinct from mid-ocean ridge spreading centers. The lack of hydrogen sulfide within the Loihi hydrothermal fluids and the presence of an oxygen minimum zone at this submarine volcano’s summit, results in a prolonged presence of reduced Fe within the dispersing non-buoyant plume. In this study, we have investigated the potential for microbial carbon fixation within the Loihi plume. We sampled for both particulate and dissolved organic carbon in hydrothermal fluids, microbial mats growing around vents, and the dispersing plume, and carried out stable carbon isotope analysis on the particulate fraction. The δ13C values of the microbial mats ranged from −23‰ to −28‰, and are distinct from those of deep-ocean particulate organic carbon (POC). The mats and hydrothermal fluids were also elevated in dissolved organic carbon (DOC) compared to background seawater. Within the hydrothermal plume, DOC and POC concentrations were elevated and the isotopic composition of POC within the plume suggests mixing between background seawater POC and a 13C-depleted hydrothermal component. The combination of both DOC and POC increasing in the dispersing plume that cannot solely be the result of entrainment and DOC adsorption, provides strong evidence for in-situ microbial productivity by chemolithoautotrophs, including a likelihood for iron-oxidizing microorganisms.  相似文献   

14.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   

15.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

16.
Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21–32 mg C l?1 in O/A horizon leachates, from 5–7 mg C l?1 in B horizon leachates, from 2–4 mg C l?1 in groundwater solutions, from 6–8 mg C l?1 in first order streams, from 3–8 mg C l?1 in lake inlets, and from 2–7 mg C l?1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4–5 μeq mg?1 C at ambient pH, and a total of 6–7 meq COOH per gram carbon.  相似文献   

17.
Ultrafiltration experiments using new small ultracentifugal filter devices were performed at different pore size cut-offs to allow the study of organo-colloidal control on metal partitioning in water samples. Two shallow, circumneutral pH waters from the Mercy site wetland (western France) were sampled: one dissolved organic carbon (DOC)- and Fe-rich and a second DOC-rich and Fe-poor. Major- and trace-element cations and DOC concentrations were analysed and data treated using an ascendant hierarchical classification method. This reveals the presence of three groups: (i) a “truly” dissolved group (Na, K, Rb, Ca, Mg, Ba, Sr, Si and Ni); (ii) an inorganic colloidal group carrying Fe, Al and Th; and (iii) an organic colloidal group enriched in Cr, Mn, Co, Cu and U. However, REE and V have an ambivalent behaviour, being alternatively in the organic pool and in the inorganic pool depending on sample. Moreover, organic speciation calculation using Model VI were performed on both samples for elements for which binding constants were available (Ca, Mg, Ni, Fe, Al, Th, Cr, Cu, Dy, Eu). Calculation shows relatively the same partitioning of these elements as ultrafiltration does. However, some limitations appear such as (i) a direct use of ultrafiltration results which tends to overestimate the fraction of elements bound to humic material in the inorganic pool as regards to model calculations as well as, (ii) a direct use of speciation calculation results which tends to overestimate the fraction of elements bound to humic material in the organic pool with regard to ultrafiltration results. Beside these limitations, one can consider that both techniques, ultrafiltration and speciation calculation, give complementary information, especially for more complex samples where inorganic and organic colloids compete.  相似文献   

18.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

19.
Globally, the ongoing retreat of mountain glaciers will ultimately diminish fresh water supplies. This has already begun in watersheds with greatly reduced glacial coverage. Still unknown are the affects of glacial retreat on downstream water quality, including the threats to human and ecosystem health. In the Cordillera Blanca, retreating glaciers have exposed sulfide-rich rock outcrops, negatively affecting the quality of the glacial meltwater. This study has evaluated glacial melt stream hydrogeochemistry in the sulfide-bearing Rio Quilcay watershed (∼9°27′S, ∼77°22′W) during the 2008 dry season. Surface water samples were collected from the upper 12 km of the watershed during the 2008 dry season. Dissolved (0.4 μm) and unfiltered acidified (pH < 2) Al, Co, Cu, Fe, Ni, Mn, Pb, Zn and dissolved major ions and organic C (DOC) concentrations were quantified and pH and temperature were measured in the field. Twenty of 22 stream samples had pH values below 4, generating significantly (p < 0.01, α = 0.05) greater cation denudation normalized to discharge than other worldwide glacier-fed streams. Additionally, dissolved trace and minor element concentrations were comparable to acid mine drainage. Non-conservative dissolved element behaviors resulted from adsorption/desorption reactions in tributary mixing zones. At low pH values, hydrous Fe oxides acted as the dominant sorption surfaces. The poor water quality observed in Cordillera Blanca headwaters coupled with the likely exposure of additional sulfide-rich outcrops from ongoing glacial retreat may pose water quality challenges.  相似文献   

20.
Transport of dissolved organic carbon (DOC) in four river systems in different physiographic regions of the United States was related to link magnitude by a power function, log Y = ?0.84 + 1.24 log X. Multiple linear regression indicated that discharge, watershed area, and link magnitude explained almost all variation in DOC transport. For purposes of ecosystem comparison, link magnitude appeared superior to other classification systems, such as stream order.In two of the river systems, the largest fraction of DOC was transported in the spring. A third has a winter transport maximum; the last had bimodal spring and fall maxima.Streams transporting similar total amounts of DOC may vary widely in DOC concentration (mg. 1?1). Particulate organic matter concentration was not simply related to that of DOC.Ranges and means of DOC concentration, mean DOC: POC ratios, annual load of transported DOC as well as annual watershed DOC output were tabulated for 45 streams and rivers, representing a broad range of stream systems and physiographic regions. Mean DOC concentration for these 45 waterways ranged from 0.7 to 28 mg. 1?1. The very low DOC values are found in undisturbed streams; many of the higher values are associated with larger streams influenced by human activities. Most DOC outputs fell within the range 0.21–5.42 metric tons. km?2.yr?1; mean DOC:POC ranged between 0.09 and 70.A comparison was made among several biomes of the ratio of experted DOC to watershed gross and net primary production. DOC, while playing a major role in aquatic ecosystem organic budgets, appears to be of little significance in the nutrient balance of watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号