首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of forward extraction [AuCl4]? from aqua regia medium by diethylene glycol dibutyl ether (DBC) have been investigated by the Lewis cell (LC) technique. At first gold extraction has been carried out under different experimental conditions for achieving the stoichiometry coefficients and the value of the extraction equilibrium constant (K = 0.1). For kinetic data treatment, flux ‘F’ method has been applied. Reaction order with respect to DBC, pH and [AuCl4]? was determined and then the rate constant was calculated. The rate of gold extraction from 2 M chloride medium can be expressed as F = 100.88[AuCl4?]1.25 [DBC]0.4 [H+]?0.22. Kinetics data were treated by EVIEWS software and coefficients were obtained. The comparison of manual and software results indicated that the results had good conformity. Influence of temperature was studied and then activation energy, Ea, (11.17 kJ/mol), activation enthalpy (11.66 kJ/mol) and entropy (?187 J/mol K) were calculated by using Arrhenius and activation complex theory respectively. Ea value (< 20.9 kJ/mol) indicates that, the extraction of gold (III) in the investigated system is controlled by diffusion process.  相似文献   

2.
《Applied Geochemistry》1998,13(7):905-916
Experiments measuring kaolinite and smectite dissolution rates were carried out using batch reactors at 35° and 80°C. No potential catalysts or inhibitors were present in solution. Each reactor was charged with 1 g of clay of the ≤2 μm fraction and 80, 160 or 240 ml of 0.1–4 M KOH solution. An untreated but sized kaolinite from St. Austell and two treated industrial smectites were used in the experiments. One smectite is a nearly pure montmorillonite, while the second has a significant component of beidellitic charge (35%). The change in solution composition and mineralogy was monitored as a function of time. Initially, the 3 clays dissolved congruently. No new formed phases were observed by XRD and SEM during the pure dissolution stage. The kaolinite dissolution is characterized by a linear release of silica and Al as a function of the log of time. This relationship can be explained by a reaction affinity effect which is controlled by the octahedral layer dissolution. Far from equilibrium, dissolution rates are proportional to a0.56±0.12OH at 35°C and to a0.81±0.12OH at 80°C. The activation energy of kaolinite dissolution increases from 33±8 kJ/mol in 0.1 M KOH solutions to 51±8 kJ/mol in 3 M KOH solutions. In contrast to kaolinite, the smectites dissolve at much lower rates and independently of the aqueous silica or Al concentrations. The proportionality of the smectite dissolution rate constant at 35 and 80°C was a0.15±0.06OH. The activation energy of dissolution appears to be independent of pH for smectite and is found to be 52±4 kJ/mol. The differences in behavior between the two kinds of minerals can be explained by structural differences. The hydrolysis of the tetrahedral and the octahedral layer appears as parallel reactions for kaolinite dissolution and as serial reactions for smectite dissolution. The rate limiting step is the dissolution of the octahedral layer in the case of kaolinite, and the tetrahedral layer in the case of smectite.  相似文献   

3.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

4.
《Chemical Geology》2006,225(1-2):40-60
Fluorite is the most common fluoride mineral in magmatic silicic systems and its crystallization can moderate or buffer fluorine concentrations in these settings. We have experimentally determined fluorite solubility and speciation mechanisms in haplogranitic melts at 800–950 °C, 100 MPa and aqueous-fluid saturation. The starting haplogranite compositions: peraluminous (alumina saturation index, ASI = 1.2), subaluminous (ASI = 1.0) and peralkaline (ASI = 0.8) were variably doped with CaO or F2O−1 in the form of stoichiometric mineral or glass mixtures. The solubility of fluorite along the fluorite–hydrous haplogranite binaries is low: 1.054 ± 0.085 wt.% CaF2 (peralkaline), 0.822 ± 0.076 wt.% (subaluminous) and 1.92 ± 0.15 wt.% (peraluminous) at 800 °C, 100 MPa and 10 wt.% H2O, and exhibits a minimum at ASI  1. Fluorite saturation isotherms are strongly hyperbolic in the CaO–F2O−1 space, suggesting that fluorite saturation is controlled by the activity product of CaO and F2O−1, i.e., these components are partially decoupled in the melt structure. The form of fluorite liquidus isotherms implies distinct roles of fluorite crystallization: in Ca-dominant systems, fluorite crystallization is controlled by the fluorine concentration in the melt only and remains nearly independent of calcium contents; in F-rich systems, the crystallization of fluorite is determined by CaO contents and it does not buffer fluorine concentration in the melt. The apparent equilibrium constant, K, for the equilibrium CaO + cF2O−1 = CaF2 (+ associates) is log K=  (2.449 ± 0.085)·Al2O3exc + (4.902 ± 0.066); the reaction-stoichiometry parameter varies as follows: c=  (0.92 ± 0.11)·Al2O3exc + (1.042 ± 0.084) at 800 °C, 100 MPa and fluid saturation where Al2O3exc are molar percent alumina in excess over alkali oxides. The reaction stoichiometry, c, changes at subaluminous composition: in peralkaline melts, competition of other network modifiers for excess fluorine anions leads to the preferential alkali–F short-range order, whereas in peraluminous compositions, excess alumina associates with calcium cations to form calcioaluminate tetrahedra. The temperature dependence of fluorite solubility is described by the binary symmetric Margules parameter, W = 36.0 ± 1.4 kJ (peralkaline), 39.7 ± 0.5 kJ (subaluminous) and 32.8 ± 0.7 kJ (peraluminous). The strong positive deviations from ideal mixing imply the occurrence of CaF2–granite liquid–liquid immiscibility at temperatures above 1258 °C, which is consistent with previous experimental data. These experimental results suggest very low solubilities of fluorite in Ca-rich melts, consistent with the lack of fluorine enrichment in peralkaline rhyolites and calc-alkaline batholiths. On the other hand, high CaO concentrations necessary to crystallize fluorite in F-rich peraluminous melts are not observed in nature and thus magmatic crystallization of fluorite in topaz-bearing silicic suites is suppressed. A procedure for calculating fluorite solubility and the liquidus isotherms for a whole-rock composition and temperature of interest is provided.  相似文献   

5.
Rock magnetic and palaeomagnetic studies were performed on Mesozoic redbeds collected from the central and southern Laos, the northeastern and the eastern parts of the Khorat Plateau on the Indochina Block. Totally 606 samples from 56 sites were sampled and standard palaeomagnetic experiments were made on them. Positive fold tests are demonstrated for redbeds of Lower and Upper Cretaceous, while insignificant fold test is resulted for Lower Jurassic redbeds. The remanence carrying minerals defined from thermomagnetic measurement, AF and Thermal demagnetizations and back-field IRM measurements are both magnetite and hematite. The positive fold test argues that the remanent magnetization of magnetite or titanomagnetite and hematite in the redbeds is the primary and occurred before folding. The mean palaeomagnetic poles for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous are defined at Plat./Plon. = 56.0°N/178.5°E (A95 = 2.6°), 63. 3°N/170.2°E (A95 = 6.9°), and 67.0°N/180.8°E (A95 = 4.9°), respectively. Our palaeomagnetic results indicate a latitudinal translations (clockwise rotations) of the Indochina Block with respect to the South China Block of −10.8 ± 8.8° (16.4 ± 9.0°); −11.1 ± 6.2° (17.8 ± 6.8°); and −5.3 ± 4.7° (13.3 ± 5.0°), for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, respectively. These results indicate a latitudinal movement of the Indochina Block of about 5–11° (translation of about 750–1700 km in the southeastward direction along the Red River Fault) and clockwise rotation of 13–18° with respect to the South China Block. The estimated palaeoposition of the Khorat Plateau at ca. 21–26°N during Jurassic to Cretaceous argues for a close relation to the Sichuan Basin in the southwest of South China Block. These results confirm that the central part of the Indochina Block has acted like a rigid plate since Jurassic time and the results also support an earlier extrusion model for Indochina.  相似文献   

6.
The Late Cretaceous location of the Lhasa Terrane is important for constraining the onset of India-Eurasia collision. However, the Late Cretaceous paleolatitude of the Lhasa Terrane is controversial. A primary magnetic component was isolated between 580 °C and 695 °C from Upper Cretaceous Jingzhushan Formation red-beds in the Dingqing area, in the northeastern edge of the Lhasa Terrane, Tibetan Plateau. The tilt-corrected site-mean direction is Ds/Is = 0.9°/24.3°, k = 46.8, α95 = 5.6°, corresponding to a pole of Plat./Plon. = 71.4°/273.1°, with A95 = 5.2°. The anisotropy-based inclination shallowing test of Hodych and Buchan (1994) demonstrates that inclination bias is not present in the Jingzhushan Formation. The Cretaceous and Paleogene poles of the Lhasa Terrane were filtered strictly based on the inclination shallowing test of red-beds and potential remagnetization of volcanic rocks. The summarized poles show that the Lhasa Terrane was situated at a paleolatitude of 13.2° ± 8.6°N in the Early Cretaceous, 10.8° ± 6.7°N in the Late Cretaceous and 15.2° ± 5.0°N in the Paleogene (reference point: 29.0°N, 87.5°E). The Late Cretaceous paleolatitude of the Lhasa Terrane (10.8° ± 6.7°N) represented the southern margin of Eurasia prior to the collision of India-Eurasia. Comparisons with the Late Cretaceous to Paleogene poles of the Tethyan Himalaya, and the 60 Ma reference pole of East Asia indicate that the initial collision of India-Eurasia occurred at the paleolatitude of 10.8° ± 6.7°N, since 60.5 ± 1.5 Ma (reference point: 29.0°N, 87.5°E), and subsequently ~ 1300 ± 910 km post-collision latitudinal crustal convergence occurred across the Tibet. The vast majority of post-collision crustal convergence was accommodated by the Cenozoic folding and thrust faulting across south Eurasia.  相似文献   

7.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

8.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

9.
Surface sediments from the Gulf of Cádiz (GoC) were analyzed by alkaline CuO oxidation, in order to estimate the contribution of terrigenous organic matter (TOM) to the inner continental shelf of the southwest Iberian Peninsula. The parallel analysis of sediment samples from the two most important rivers draining to this coastal area (i.e. Guadiana River and Tinto–Odiel fluvial system) provided fundamental information regarding local terrestrial sources. Relatively constant intensive lignin parameters (S:V = 1.0 ± 0.1 and C:V = 0.22 ± 0.04) and high values of the lignin phenol vegetation index (LPVI = 155 ± 43) indicated that non-woody angiosperm tissues constitute the dominant component of vascular plant material reaching the shelf sediments. The NW to SE decreasing isotopic (13C) and molecular (Λ8) signatures found among the sediments, coinciding with the Guadiana delivery plume, suggest that this river is the main terrestrial source in the inner GoC shelf. Slightly elevated values of degradation indicative ratios ([Ad:Al]V = 0.41 ± 0.10; [Ad:Al])S = 0.34 ± 0.07; [3,5-Bd:V] = 0.14 ± 0.05; P:[V + S] = 0.24 ± 0.09) suggested the alteration state of the shelf sediments. The two fold higher ratios of the river sediments (Guadiana: [Ad:Al]V = 0.82 ± 0.08; [Ad:Al]S = 0.84 ± 0.03; Tinto–Odiel: [Ad:Al]V = 0.86 ± 0.12; [Ad:Al]S = 0.83 ± 0.013) and the increasing degradation trend observed outward in the shelf, lead us to consider preferential sorption processes, instead of in situ diagenesis, to affect the degradation signature of the shelf sediments. Preferentially solubilized degraded OM is more likely to be sorbed and stabilized prior to transport to the marine system, showing an apparently more advanced degradation state. The use of the 3,5-Bd:V ratio in conjunction with (Ad:Al)V revealed a composition continuum of the sedimentary OM ranging from fresh plant materials to highly altered soil humic constituents. Elemental and molecular analyses show a land to sea gradient by a NW to SE decrease of the terrestrial influence, accounting for larger terrestrial inputs (TOM: 71–98%) in those sediments near the Guadiana mouth, and predominantly autochthonous composition (TOM: 42–50%) in those located offshore. This work utilizes lignin derived biomarkers to determine the contribution of terrigenous OM delivered to this poorly described coastal area from regional rivers. Within a context of increasing international efforts to better understand the global C cycling, this study illustrates the relevance of using the alkaline CuO oxidation approach to evaluate C budgets and continental influence in river dominated ocean margins.  相似文献   

10.
Pore waters of natural clays, which are investigated as potential host rock formations for high-level nuclear waste, are known to contain large amounts of low-molecular weight organic compounds. These small organic ligands might impact the aqueous geochemistry of the stored radionuclides and, thus, their migration behavior. In the present work, the complexation of Cm(III) with formate in aqueous NaCl solution is investigated by time-resolved laser fluorescence spectroscopy (TRLFS) as a function of the ionic strength (0.5–3.0 mol/kg), the ligand concentration (0–0.2 mol/kg) and the temperature (20–90 °C). The Cm(III) speciation is determined by deconvolution of the emission spectra. The obtained distribution of Cm(III) species is used to calculate the conditional stability constants (log K′(T)) at a given temperature and ionic strength which are extrapolated to zero ionic strength by using the specific ion interaction theory (SIT). Thus, the thermodynamic log K0n(T) values for the formation of [Cm(Form)n](3−n)+ (n = 1, 2) and the ion interaction coefficients (ε(i,k)) for [Cm(Form)n](3−n)+ (n = 1, 2) with Cl are obtained. The log K01(T) (2.11 (20 °C)–2.49 (90 °C)) and log K02(T) values (1.17 (30 °C–2.01 (90 °C)) increase continuously with increasing temperature. The log K0n(T) values are used to derive the standard reaction enthalpies and entropies (ΔrH0m, ΔrS0m) of the respective complexation reactions according to the Van’t Hoff equation. In all cases, positive ΔrH0m and ΔrS0m values are obtained. Thus, both complexation steps are endothermic and entropy-driven.  相似文献   

11.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

12.
Pure-iron end-member hibbingite, Fe2(OH)3Cl(s), may be important to geological repositories in salt formations, as it may be a dominant corrosion product of steel waste canisters in an anoxic environment in Na–Cl- and Na–Mg–Cl-dominated brines. In this study, the solubility of Fe2(OH)3Cl(s), the pure-iron end-member of hibbingite (FeII, Mg)2(OH)3Cl(s), and Fe(OH)2(s) in 0.04 m to 6 m NaCl brines has been determined. For the reactionFe2(OH)3Cl(s) + 3H+ ? 3 H2O + 2 Fe2+ + Cl?,the solubility constant of Fe2(OH)3Cl(s) at infinite dilution and 25 °C has been found to be log10 K = 17.12 ± 0.15 (95% confidence interval using F statistics for 36 data points and 3 parameters). For the reactionFe(OH)2(s) + 2H+ ? 2 H2O + Fe2+,the solubility constant of Fe(OH)2 at infinite dilution and 25 °C has been found to be log10 K = 12.95 ± 0.13 (95 % confidence interval using F statistics for 36 data points and 3 parameters). For the combined set of solubility data for Fe2(OH)3Cl(s) and Fe(OH)2(s), the Na+–Fe2+ pair Pitzer interaction parameter θNa+/Fe2+ has been found to be 0.08 ± 0.03 (95% confidence interval using F statistics for 36 data points and 3 parameters). In nearly saturated NaCl brine we observed evidence for the conversion of Fe(OH)2(s) to Fe2(OH)3Cl(s). Additionally, when Fe2(OH)3Cl(s) was added to sodium sulfate brines, the formation of green rust(II) sulfate was observed, along with the generation of hydrogen gas. The results presented here provide insight into understanding and modeling the geochemistry and performance assessment of nuclear waste repositories in salt formations.  相似文献   

13.
Three models were examined to predict C aromaticity (fa) of biochars based on either their elemental composition (C, H, N and O) or fixed C (FC) content. Values of fa from solid state 13C nuclear magnetic resonance (NMR) analysis with Bloch-decay (BD) or direct polarisation (DP) techniques, concentrations of total C, H, N, and organic O, and contents of FC of 60 biochars were either compiled from the literature (dataset 1, n = 52) or generated in this study (dataset 2, n = 8). Models were first calibrated with dataset 1 and then validated with dataset 2. All models were able to fit dataset 1 when atomic H to C ratio (H/C) < 1 (except two ash rich biochars) and to estimate fa of HF treated biochars (H/C < 1). Model 1, which was based on values of H/C only and calibrated with a root mean square of error (RMSE) of 0.04 fa-unit (n = 41), could predict the experimental data with a RMSE = 0.02 fa-unit (n = 6). Model 2, which was based on biochar elemental composition data, showed the most accurate prediction, with a RMSE of 0.03 fa-unit (n = 41) for the calibration data, and of 0.02 fa-unit (n = 6, H/C < 1) for the validation data. Model 3, which was based on contents of FC and C, and modified with a correction factor of 0.96, displayed the highest RMSE (0.06 fa-unit, n = 19) among the three models. Models 1 and 2 did not work properly for samples having either an H/C ratio > 1, high concentrations of carbonate or high inorganic H. These models need to be further tested with a wider range of biochars before they can be recommended for classification of biochar stability.  相似文献   

14.
A paleomagnetic, rock-magnetic and paleointensity study has been carried out on 14 basaltic lava flows from two Pliocene (K–Ar age between 3.09 ± 0.10 Ma and 4.00 ± 0.15 Ma) sequences (Apnia and Korxi) from the eastern Djhavakheti Highland in southern Georgia (Caucasus).Measurement of strong-field magnetisation versus temperature curves yielded three types of thermomagnetic curves: (i) Reversible curves with magnetite as only remanence carrier (type H); (ii) irreversible curves with magnetite as only carrier of remanence (type H) and (iii) irreversible curves showing a low Curie-temperature phase and magnetite (type L). Analysis of hysteresis curves showed that samples were characterised by a mixture of single-domain and multi-domain grains.Paleomagnetic experiments allowed determining characteristic components for all flows and normal polarities (6 flows), reversed polarities (7 flows) and intermediate polarities (1 flow) were observed.. Paleomagnetic poles were calculated using only those sites unequivocally showing normal or reversed polarities. The paleomagnetic pole obtained from flows of both combined sequences (latitude λ = 77.9°N, longitude ϕ = 152.1°E, n = 13, A95 = 11.8°, k = 13.4) showed a good agreement with the 5 Ma window of the European synthetic apparent polar wander path of Besse and Courtillot (2002). The paleomagnetic direction of the combined Apnia-Korxi flows agrees well with the expected one, showing no significant tectonic rotation. The latter cannot be however, completely excluded in the Korxi section. In that section, analysis of the angular dispersion of virtual geomagnetic poles yields a much higher value than expected.Paleointensity experiments using the Coe method were performed on 31 specimens from 10 flows. After application of specific selection criteria, 19 samples from 8 flows were observed to provide successful determinations, with mean flow values showing a wide scatter. If only flows with more than one successful paleointensity determination are taken into account, virtual dipole moments (VDMs) vary between 3.5 × 1022 A m2 and 8.3 × 1022 A m2. In intermediate polarity site AP2 no weak transitional paleostrength values were observed.  相似文献   

15.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

16.
The Linzizong Group (64–44 Ma) of the Lhasa Terrane in Tibet is critically positioned for establishing the paleoposition of the southern leading edge of the Asian continent during Paleogene times and constraining onset of the India–Asia collision. Here we report paleomagnetic results from a collection comprising 384 drill-core samples from 34 sites embracing all three formations of this group. Comprehensive demagnetization and field tests isolate characteristic remanent magnetizations (ChRM) summarized by overall tilt-corrected formation-mean directions of D = 183.6°, I = −12.4° (α95 = 8.1°) for the Dianzhong (64–60 Ma), D = 1.0°, I = 18.1° (α95 = 8.1°) for the Nianbo (60–50 Ma), and D = 12.4°, I = 23.2° (α95 = 7.3°) for the Pana (50–44 Ma). Fold tests are positive in each formation suggesting a pre-folding origin and we interpret the magnetizations as quasi-primary and acquired at, or slightly later than, formation of the Linzizong Group. Revised Paleogene paleopoles with Ar–Ar age constraints for the Lhasa Terrane indicate that onset of the India–Asia collision occurred no later than ∼60.5 ± 1.5 Ma at a low paleolatitude of ∼10°N. Analysis of 60 site-mean observations from a range of studies of the Pana Formation in the higher part of the succession highlight a large dispersion of ChRM directions; a number of possible causes are suggested but further study of this formation over a wider area is required to resolve this issue.  相似文献   

17.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

18.
Pristine diorite drill cores, obtained from the Äspö Hard Rock Laboratory (HRL, Sweden), were used to study the retention properties of fresh, anoxic crystalline rock material towards the redox-sensitive uranium. Batch sorption experiments and spectroscopic methods were applied for this study. The impact of various parameters, such as solid-to-liquid ratio (2–200 g/L), grain size (0.063–0.2 mm, 0.5–1 mm, 1–2 mm), temperature (room temperature and 10 °C), contact time (5–108 days), initial U(VI) concentration (3 × 10−9 to 6 × 10−5 M), and background electrolyte (synthetic Äspö groundwater and 0.1 M NaClO4) on the U(VI) sorption onto anoxic diorite was studied under anoxic conditions (N2). Comparatively, U(VI) sorption onto oxidized diorite material was studied under ambient atmosphere (pCO2 = 10−3.5 atm). Conventional distribution coefficients, Kd, and surface area normalized distribution coefficients, Ka, were determined. The Kd value for the U(VI) sorption onto anoxic diorite in synthetic Äspö groundwater under anoxic conditions by investigating the sorption isotherm amounts to 3.8 ± 0.6 L/kg which corresponds to Ka = 0.0030 ± 0.0005 cm (grain size 1–2 mm). This indicates a weak U sorption onto diorite which can be attributed to the occurrence of the neutral complex Ca2UO2(CO3)3(aq) in solution. This complex was verified as predominating U species in synthetic Äspö groundwater by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Compared to U sorption at room temperature under anoxic conditions, U sorption is further reduced at decreased temperature (10 °C) and under ambient atmosphere. The U species in aqueous solution as well as sorbed on diorite were studied by in situ time-resolved attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. A predominant sorbing species containing a UO2(CO3)34− moiety was identified. The extent of U sorption onto diorite was found to depend more on the low sorption affinity of the Ca2UO2(CO3)3(aq) complex than on reduction processes of uranium.  相似文献   

19.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

20.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号