首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   10篇
  国内免费   8篇
测绘学   1篇
大气科学   16篇
地球物理   68篇
地质学   51篇
海洋学   120篇
天文学   65篇
综合类   2篇
自然地理   7篇
  2021年   3篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   3篇
  2014年   12篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   10篇
  2009年   13篇
  2008年   8篇
  2007年   14篇
  2006年   13篇
  2005年   19篇
  2004年   14篇
  2003年   14篇
  2002年   5篇
  2001年   10篇
  2000年   9篇
  1999年   14篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   6篇
  1987年   9篇
  1986年   11篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
  1958年   1篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
1.
Sliding of natural and artificial slopes generally occurs during or following strong earthquakes. Such sliding is greatly affected by a combination of geological conditions and earthquake loading. Earthquake-induced landslides often cause more damage to infrastructure and human lives than the earthquake itself. Pseudo-static analysis is widely implemented as one of several design methods used in engineering practice to assess the seismic stability of natural and artificial slopes. However, the most important issue of pseudo-static analysis is to select the most appropriate method for measuring seismic coefficient. In order to investigate this, back analysis was conducted for surficial slides subjected to strong ground motion during the 2004 Mid-Niigata prefecture earthquake in Japan. This paper surveyed the stochastic properties of earthquake-induced surficial slides and clearly showed that the obtained results were applicable to back analysis of shear strength and seismic coefficient. In back analysis, soil properties such as soil strength and density and sliding depth were assumed as random variables owing to their uncertainties. Seismic coefficient is also assumed to be a random variable and varies with distance from the epicenter fault line. The analysis of 4504 recorded surficial slides clearly shows a unique relationship of landslide occurrence ratio with slope angle and distance from the epicenter fault line. This study’s results enhance the calculation of the shear strength of weathered soil covering slopes and the horizontal seismic coefficient through back analysis procedure. By considering possible stochastic properties of variables, some case studies were implemented in the back analysis.  相似文献   
2.
Hydrogeology Journal - Fresh groundwater is a critical resource supporting coastal ecosystems that rely on low-salinity, nutrient-rich groundwater discharge. This resource, however, is subject to...  相似文献   
3.
In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate‐change drivers and potential groundwater recharge (PGR) patterns across Africa for a long‐term record (1960–2010). Water‐balance components were simulated by using the PCR‐GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate‐change controls on PGR were detected as a function of latitude in the last three decades (1980–2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation‐Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect, while PGR is in‐phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out‐of‐phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modelling results need to be validated more extensively with direct measurements in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
Wada  Yutaro  Hsu  Li-Ta  Gu  Yanlei  Kamijo  Shunsuke 《GPS Solutions》2017,21(1):65-78
GPS Solutions - Recently, 3D building models have become an important aid to many positioning methods such as LiDAR and GPS positioning. Creating an accurate 3D building model requires accurate 2D...  相似文献   
5.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   
6.
Pagurus hermit crabs have a well‐developed right cheliped (major cheliped) and in some species the major cheliped of males is longer than that of females. This paper describes sex‐related differences in major cheliped length and regeneration pattern of the major cheliped in the hermit crab Pagurus filholi. We also examined the function of the major cheliped in male–male competition. Major cheliped length of males was longer than that of females in P. filholi. Males regenerated larger chelipeds than females at the first molt after experimentally induced autotomy. Body size growth in males of the regeneration group was less than that in intact males of the control group while there was no significant difference in body size growth of females between regeneration and control groups. Major cheliped length was included in the best model to explain the outcome of male–male competition and thus sexual selection appears to be a causative factor in the sex‐related difference of the major cheliped length. Sex‐related differences in the regeneration pattern may reflect differences in evolutionary pressures on males for large major chelipeds and females for large body size.  相似文献   
7.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
8.
Fluid viscous dampers are used to control story drifts and member forces in structures during earthquake events. These elements provide satisfactory performance at the design‐level or maximum considered earthquake. However, buildings using fluid viscous dampers have not been subjected to very large earthquakes with intensities greater than the design and maximum considered events. Furthermore, an extensive database of viscous damper performance during large seismic events does not exist. To address these issues, a comprehensive analytical and experimental investigation was conducted to determine the performance of damped structures subjected to large earthquakes. A critical component of this research was the development and verification of a detailed viscous damper mathematical model that incorporates limit states. The development of this model and the laboratory and simulation results conclude good correlation with the new model and the damper limit states and provide superior results compared with the typical damper model when considering near collapse evaluation of structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
Seasonal variations of the surface currents in the Tsushima Strait were investigated by analyzing the monthly mean surface currents measured with HF radar. Several new features of the surface currents have been found. One notable feature is the large, complicated seasonal variation in the current structure in the eastern channel of the strait. For example, in the southeastern and northwestern regions of the channel, southwestward countercurrents are found in summer while southeastward acrossshore currents are found in autumn and winter. The wind-driven flow (Ekman flow) as well as surface geostrophic currents are responsible for these complicated variations of the surface currents. To quantify each variation of the flow and current, the wind-driven flow was calculated from the monthly wind (more precisely, the friction velocity) using the monthly speed factor and deflection angle estimated in our previous study, and the surface geostrophic currents were then estimated by subtracting the wind-driven flow from the measured surface currents. It was found that the acrossshore currents are the wind-driven flow, and that the surface geostrophic currents flow almost in the along-shore direction, indicating the validity of the decomposition of the surface velocity into the wind-driven flow and the geostrophic currents using the speed factor and deflection angle. A real-vector empirical orthogonal function (EOF) analysis of the surface geostrophic currents shows a pair of eddies in the lee of Tsushima and Iki Islands as the first mode, which indicates that the southwestward countercurrents in the eastern channel are formed primarily by the incoming Tsushima Warm Current.  相似文献   
10.
Numerical experiments were performed to investigate the effects of eddies generated in deep water formation processes on an abyssal circulation in a closed bowl-shaped basin. Two sets of experiments were performed. One set was eddy-restricted experiments in which only a volume-driven (upwelling-driven) circulation was simulated and the other set was eddy-permitted experiments in which both a volume-driven circulation and an eddy-driven circulation were simulated. In the two layer experiment where the lower layer water is formed, a mean along-slope current is formed in the lower layer for both the eddy-restricted and eddy-permitted experiments. The direction of the current was not unique in the eddy-restricted experiment, but it was cyclonic in the eddy-permitted experiment. In the three layer experiments where water of the intermediate layer is formed, the mean along-slope current in the lowest layer is negligibly small in the eddy-restricted experiment, while it is large and cyclonic in the eddy-permitted experiment. The driving forcings of the eddy-driven circulation are quantified in terms of eddy fluxes of relative vorticity (Reynolds stress) and layer thickness (bolus velocity). These terms increase as the volume of the newly formed water increases, but they do not change greatly with the slope height. The magnitude of these terms changes with the slope width, but the sum of these terms does not vary greatly. As a result, the intensity of the eddy-driven circulation depends primarily on the volume of newly formed water. These dependences of eddy fluxes were interpreted using downgradient diffusion of potential vorticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号