首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The effect of mountains on the occurrence of precipitation systems on Taiwan island is very significant, especially as mountain areas occupy about two-thirds of the land-mass. The mountains are, on average, about 3 km high. To investigate the formation of precipitation systems influenced by Pacific high pressure systems, we selected five cases (May 24, 25 and 26, June 19 and 20 in 1987) during a field program, TAMEX (Taiwan Area Mesoscale Experiment, Kuo and Chen, 1990). In all cases most of the rainfall took place in the afternoon when the level of free convection (LFC) was at about the 1 km height. If the average wind (below 3 km in height) was from the south (May 25 and 26), higher amounts of precipitation would be found along the sloped areas of western and eastern Taiwan. Rainfall also occurred in southern and northern Taiwan. If the average wind was from the southwest (May 24), the precipitation pattern was similar to that on May 25, except over the plains area in southwest and northeast Taiwan, where the amount was less. However, if the prevailing wind direction changed little with height and the average wind was from the south-southeast (June 19), higher rainfall amounts occurred from northwestern to central Taiwan. If the average wind was from the south and wind direction changed little with height (June 20), higher rainfall amounts took place in northern and central Taiwan. A nonhydrostatic model was used to simulate the formation of precipitation systems in all five cases. Simulation results indicated that the mixing ratio of rainwater could occur on the upstream side of a mountain slope and in the central mountain areas, where topographic lifting from the environmental wind and an upslope flow due to surface heating were evident. On the downstream side of the mountain, upward motion due to lee-side convergence and upslope motion from surface heating would also help rain form.With 13 Figures  相似文献   

2.
热带气旋登陆华南前后的强降水大尺度环境场特征   总被引:1,自引:4,他引:1       下载免费PDF全文
运用2001年和2002年7个热带气旋 (TC) 登陆华南前后的38个日降水量、NCEP/NCAR再分析资料以及卫星云图, 经普查和分析将TC造成的降水区划分为纬向型、经向型、NE—SW向型3种; 对各型高、中、低层中的主要气象因子作了详细分析, 如高层流场、中层副热带高压、低层急流和切变线或辐合线、整层水汽通量散度以及季风云涌等, 在此基础上归纳概括出了这些降水型各自前24 h的大尺度环境场特征概略模型图, 并对其强降水形成机理尽可能地给出了解释, 为TC登陆前后的超短期降水预报提供某种参考方法。  相似文献   

3.
利用中国测站的逐日降水资料和NCEP/NCAR再分析资料,分析了近35年华南降水季节演变的年代际变化特征及其相关的大气环流异常特征。华南地区降水季节分布型在1990年代初期发生了年代际转变,其中,华南西部降水在1990年之前为双峰型分布,1990年之后变为以6月为峰值的单峰型分布;华南东部降水在1990年之前是以5月、8月为峰值的弱双峰型分布,1990年之后变为以6月、8月为峰值的显著双峰型分布。华南东、西部降水季节分布的年代际变化分别与华南全区6月降水量的年代际增加以及8月华南东、西部降水显著反相的年代际变化(东多西少)密切相关。1990年之后,大雨及以上强降水事件发生频率的增强是导致上述年代际变化的主要原因。华南6月降水年代际的增强与南海区域的西北太平洋副热带高压(简称西太副高)脊线位置的年代际异常偏南密切相关。7月华南地区降水的年代际增加与西太副高年代际东撤及影响华南地区的热带气旋频数年代际增多有关。8月华南东、西部降水显著反相的年代际变化(东多西少),一方面受印度洋及南海上空夏季风年代际减弱的影响,使得输送到华南西部的水汽减少,另一方面西太副高的年代际增强并西伸,使得源自副高西南侧的水汽更直接输送至华南东部地区有关;同时也与登陆和影响华南东、西部的热带气旋的年代际增多和减少有关。   相似文献   

4.
The ENSO’s Effect on Eastern China Rainfall in the Following Early Summer   总被引:6,自引:0,他引:6  
ENSO’s effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the El Nino peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) ...  相似文献   

5.
Jing Yang  Dao-Yi Gong 《Climatic change》2010,100(3-4):807-815
Based on daily rainfall data from 1960 to 2007, this study investigated the difference in rainfall trends between seven mountain stations and 21 nearby plain stations in eastern China for the months June–August. The amount and frequency of light rain (≤2.5 mm/day) over the mountain areas showed a greater decreasing trend than over the surrounding plain regions. The trend of light-rainfall frequency at mountain stations is ??4.8%/decade, approximately double that at plain stations (??2.3%/decade). The trend in light-rainfall amount at mountain stations is ??5.0%/decade, approximately three times that at plains station (??1.4%/decade). Reduced wind speed may explain the enhanced decrease in light rainfall over mountain areas through the weakened orographic lifting. Further study is needed to determine whether the precipitation difference between mountain and plain (urban) regions is exacerbated by air pollution in East China through its indirect effects and influence on regional air stability and wind speed.  相似文献   

6.
王凯  齐铎  高丽  翁之梅 《气象科学》2021,41(2):162-171
利用自动站实时降水资料、NCEP再分析资料和多普勒雷达资料,结合中尺度数值模式WRF对台风"利奇马"在浙东地区产生的极端降水过程进行分析,重点研究了浙东地形对极端降水的影响。结果表明,"利奇马"影响期间,浙东强降水过程出现2个雨量峰值,依次由台风外层螺旋云带和台风中心附近的多个中尺度对流云团持续影响所造成,浙东地形对这一系列对流云团有明显的加强作用。浙东地区西部山脉对"利奇马"有阻滞和辐合抬升两方面作用,前者通过地形阻挡拖曳,延长强降水时长,后者通过山前显著的动力抬升作用和水汽辐合加强造成降水增幅。根据估算可知,括苍山脉在强降水阶段对暴雨的增幅可达11 mm·h~(-1),接近此时段内总雨量的2.5成。通过敏感性试验降低地形高度后,浙东地区辐合及上升运动减弱,雨量也明显减少,进一步验证了浙东地形是造成此次极端降水事件的重要原因。  相似文献   

7.
利用高分辨率卫星观测资料,从气候态角度分析了亚洲热带夏季风爆发特征。研究表明,亚洲热带夏季风最先在中南半岛西部爆发,随后在整个中南半岛和孟加拉湾东部,然后扩大至孟加拉湾西部和南海。夏季风爆发后,与孟加拉湾和南海相比,中南半岛雨量增强形势不明显。第26—28候(即5月第2候—5月第4候)是亚洲热带夏季风的爆发阶段。整个爆发过程,低层风场的时空演变与对流降水相对应,海表温度场增温较海表风场提早约1候左右;华南地区以锋面降水为主,即副热带季风降水。采用对流降水和海表上空10 m风场分别代表夏季风降水和盛行风向的时空演变特征较常规资料更为准确、精细。  相似文献   

8.
利用贵州省83个气象观测站点1961—2021年逐日降水数据,定义贵州省单站秋绵雨过程,构建了综合考虑秋绵雨最长时段日数、其余时段累计日数、9—10月雨量占年雨量比例的秋绵雨综合强度评估指标,通过小波分析、突变分析、合成分析、相关分析等方法,对贵州秋绵雨的时空特征及其与北半球500 hPa高度场、全球海温场的关系进行了研究。结果表明:秋绵雨指数大致呈东北—西南向的条带状分布,自西北部向东南部递减;秋绵雨指数年际波动大,近61 a来以0.064/10a的速率呈下降趋势;秋绵雨指数EOF分析第1模态空间型表现为全区一致分布型,是贵州秋绵雨气候变率的主模态;贵州省秋绵雨存在2~4 a的年际变化周期;1997年为贵州秋绵雨突变点;重秋绵雨年500 hPa高度场欧亚大陆上空位势高度距平呈“北正南负”的距平分布,有利于北方冷空气南下,850 hPa距平风场南海及其周边地区为显著的反气旋性环流,加强了西南暖湿气流的输送;ENSO对贵州秋绵雨的影响是非对称的,当前期8月热带东太平洋偏暖、热带西太平洋偏冷时,对应El Niño年贵州秋绵雨偏重。  相似文献   

9.
我国西南地区秋季降水年际变化的空间差异及其成因   总被引:3,自引:0,他引:3  
刘扬  刘屹岷 《大气科学》2016,40(6):1215-1226
使用1980~2010年全国站点降水资料、ERA-Interim再分析环流资料、哈德莱海表温度资料,运用聚类分析和旋转经验正交函数分解,对西南地区的秋季降水按照其年际变化规律进行分区,进而分析影响各区域降水变化的物理过程和机理。结果表明:西南地区被分为东、西两个区域。西南东、西区域秋季降水的年际变化、显著周期、旱涝异常年份、相关的环流系统都有明显差异。西南东部秋季降水主要与热带海温异常有关,受低纬度环流影响。当赤道东太平洋为暖海温异常,热带印度洋为西正东负的偶极子型海温异常时,分别激发出西北太平洋反气旋和孟加拉反气旋,共同向西南东部输送水汽,造成西南东部降水偏多。西南西部降水在秋季三个月份与不同的环流形势对应:9月降水由中南半岛反气旋输送的暖湿气流决定;10月降水受高原以东反气旋环流和孟加拉湾低槽共同影响;11月降水主要受中高纬环流异常的影响,与斯堪的纳维亚遥相关存在显著负相关。  相似文献   

10.
朱梅  肖天贵  余兴  徐小红 《气象科技》2014,42(4):663-670
利用安康和汉中地区21个测站1963—2012年逐日降水和气温资料以及统计诊断方法,分析了秦巴谷地年均气温和降水以及季节降水的时空变化特征,结果表明:秦巴谷地的年均气温呈明显线性增暖趋势,而年降水量的线性变化趋势不明显;在降水量较为集中的春夏秋3季中,春秋季降水量呈减小的趋势,而夏季的降水量却呈增多的趋势,尤其是近10年来降水量增多趋势明显。利用REOF方法将秦巴谷地夏季降水量分解为3个主要空间模态,即西部、东部和中部型,其中西部型和东部型是秦巴谷地夏季降水分布最敏感的区域类型。对秦巴山区2010年7月17—18日一次典型强降水天气过程的分析表明,西部型和东部型可能是秦巴地区的主要典型降雨型,对于秦巴地区降水规律认识和天气预报及防灾减灾有着重要意义。  相似文献   

11.
2019年,长江三峡地区年平均气温17.5℃,较常年偏高0.3℃;冬季偏冷,春,夏,秋三季气温均偏高;年高温日数偏多.2019年三峡地区年降水量1035.1毫米,较常年偏少13%;四季降水均偏少;年暴雨日数偏少.2019年,长江三峡地区年平均风速较常年偏大;年平均相对湿度接近常年;酸雨强度弱,为1999年以来的最弱年,近十余年酸雨强度呈现明显的减弱趋势.2019年,长江三峡地区高温过程多,持续时间长;三峡中东部地区出现伏秋连旱;华西秋雨开始旱,三峡中西部雨量多.  相似文献   

12.
西藏色齐拉山地区立体气候特征初步分析   总被引:1,自引:0,他引:1  
利用西藏色齐拉山地区不同海拔高度的8个自动站和3个实测气象站1年的近地面观测资料,分析了该地区气温、地温、降水量、湿度和风速等气象要素的季节变化特征,探讨了东、西坡局地气候特征差异形成的原因。结果表明:色齐拉山地区1月为最冷月、7月为最暖月;月平均最高气温、最低气温与平均气温的季节变化一致。气温日较差大年较差小。年平均气温直减率东、西坡分别为0.54℃/100m和0.73℃/100m,西坡大于东坡。地气温差冬季西坡大于东坡,夏季东坡大于西坡。年、月平均地温直减率西坡仍大于东坡;东坡除夏季7、8月份外,地温直减率小于气温直减率;西坡除冬季(12月和1月),地温直减率大于气温直减率。降水量东坡比西坡多,海拔2500m以上地区4~10月降水总量随着海拔高度的升高呈增加趋势,增加率为20.9mm/100m。空气相对湿度冬季低夏季高,年变化呈单峰型。东、西坡冬季风速较强夏季相对较弱,初春风速最大。东、西坡气候差异与海拔高度、坡向、下垫面性质有关。   相似文献   

13.
利用云南省2325个国家级台站和区域自动观测站逐小时降水数据,分析了2014~2018年云南雨季和干季的降水量、降水频次和降水强度的空间分布特征以及关键区域的降水日变化演变特征。结果表明:受复杂地形影响,云南不同区域降水特征差异显著,且与我国东部地区显著不同。年均降水量大体呈西南高、西北低的分布特征。对于云南西北部的怒江河谷地区,干、雨季降水均为夜间峰值,降水频次高,但强度较弱。对于云南最西部(99°E以西)的保山德宏地区,该地区累计降水量为云南最大,这一区域各台站日变化峰值均较为一致地出现在上午,在陆地地区较为少见。相邻的普洱和元江河谷位于云南南部(23°N以南),雨季两区域降水相当,但元江河谷在干季与雨季均为突出的夜间至清晨降水峰值,普洱地区雨季则是明显的午后降水峰值。云南中部地区降水量较周边地区明显偏小,该地区降水频次在雨季主要表现为清晨峰值,而在干季却是午后峰值更为突出,这也与我国东部地区降水日变化特征差异明显。   相似文献   

14.
通过分析台风“碧利斯“影响江西期间的自动气象站资料和雷达回波特征,探讨了造成庐山过程强降水较周围雨量明显偏多的原因.研究结果发现,“碧利斯“过境时,雷达回波强度在庐山会有加强的现象,径向速度场表现为有风向和风速的切变存在;零等速度线的走向变化和降水的变化有关,且零等速度线的变化往往先于降水的变化,能预示降水的变化趋势.除“碧利斯“本身携带的大量水汽外,庐山迎风坡的地形抬升作用,以及鄱阳湖水域充沛的水汽供应,是造成这种现象的根源;中小尺度辐合在庐山较长时间的维持,是造成庐山降水普遍大于周边地区的根本原因.  相似文献   

15.
Summary  Two-thirds of the land mass of Taiwan island is mountainous, which affects the airflow and precipitation systems over the island. In this study, we discuss the characteristics of precipitation systems when the prevailing wind direction is from the north-east during winter. Observations indicate that rainfall amounts were higher in northeastern Taiwan (the upstream side of the mountains) and that a rainfall shadow occurred in southwestern Taiwan. Simulation results from a non-hydrostatic model indicate that airflow was deflected in eastern Taiwan, while relatively high (low) pressure areas formed in eastern (western) Taiwan. A higher mixing ratio of rainfall occurred over northeastern Taiwan while lighter rainfall occurred in the eastern, and northwestern areas and the southern tip of Taiwan. This was consistent with the observational data except for the southern tip of Taiwan. Uplift due to the topography near the mountainous areas, as well as low level convergence near the coastal areas (due to the deceleration of an easterly wind in northeastern Taiwan), helped form the mixing ratio of rain. Transportation of the mixing ratio of rainfall, due to low level westward flow and upper level eastward flow, caused it to cover a larger area. The mixing ratio of rainfall formed in the upper mountainous areas in northeastern Taiwan if the upstream moisture content was reduced significantly. A temperature inversion at low levels resulted in a decrease in relative humidity and an increase in stability, requiring that the mixing ratio of rainfall should develop closer to the mountainous areas. If a low level wind blew parallel to the orientation of the mountains (NNE-SSW), a higher mixing ratio of rainfall could occur in the mountainous areas of western Taiwan. Received January 30, 1998 Revised February 19, 1999  相似文献   

16.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

17.
山东省远距离热带气旋暴雨研究   总被引:22,自引:2,他引:20  
应用1971-2003年的山东降水资料、常规天气图资料、台风年签和NCEP资料,对在华南沿海登陆和活动的热带气旋在山东造成远距离暴雨的气候特征进行统计分析,对环流形势场进行合成分析.建立了山东省远距离热带气旋暴雨的天气学模型.分别计算分析了山东有和无远距离热带气旋暴雨合成的水汽和温湿能的收支.结果表明:在华南沿海登陆和活动的热带气旋与西风带环流系统和副热带高压相互作用在山东造成的远距离热带气旋暴雨年均2.5次.暴雨的范围广、强度大.出现暴雨的时间比热带气旋登陆时间滞后.在山东造成远距离暴雨的热带气旋在华南沿海登陆时,中心东部有一股东南风或偏南风低空急流指向内陆.中高纬度中低层西风带环流弱,位置偏北.500 hPa西风带中的偏北气流与副高边缘的偏南气流在山东境内汇合.低层850-700 hPa伴有低值系统影响,山东为气旋性环流控制.热带气旋登陆后其中心附近的中低层偏南风急流向北伸展,绕过副高脊线直达山东.在台风中心附近至山东之间建立起水汽和温湿能的输送通道,把高温高湿的暖湿空气源源不断地向山东输送.在台风登陆后12-48小时内,山东暴雨区上空有大量的水汽和温湿能的净流入.暖湿气流与西风带气流相汇合,产生辐合上升,造成暴雨.  相似文献   

18.
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

19.
利用1980—2009年共30a的NCEP逐月GODAS海平面高度(sea surface height,SSH)和中国160站降水资料,系统分析了热带太平洋海平面高度季节变化及年际异常特征,初步探讨了海平面高度年际异常与中国夏季降水年际异常之间的相关关系。结果表明:1)热带太平洋海平面高度气候场总体呈"V"型分布,西高东低、西北部高于西南部;西北部高值区稳定少动,春夏季大于0.8m的范围较秋冬季略有扩大;西南部高值区春季范围最大且偏北,夏季最小且偏南;赤道区域海平面高度春秋季高于冬夏季。2)多年平均而言,热带西太平洋、西南太平洋的海平面高度年际异常最强,且冬春季较夏秋季更强,赤道中东太平洋年际异常也较大,且秋冬季异常强度和范围都更大,秋、冬和春季海平面高度年际异常与ENSO事件关系密切。3)当冬季发生ENSO事件,可利用热带太平洋海平面高度异常与中国夏季降水异常之间的同期相关关系,预测次年(ENSO事件衰减年)夏季江南地区特别是洞庭湖和鄱阳湖流域、青藏高原东部、江淮流域、内蒙东部降水可能偏多,黄河中下游流域的河套、华北地区以及华南则降水偏少  相似文献   

20.
夏季云贵高原地区降水特征及云水资源的匹配   总被引:1,自引:1,他引:0  
任冉  单婵  张羽  丁维新  顾源  娄丹 《气象》2017,43(3):315-322
基于云贵高原地区1961—2010年高分辨率(0.5°×0.5°)逐日降水格点资料,分析了云贵高原及东、西两个区域的夏季降水变化特征。并结合欧洲中期天气预报中心(ECMWF)提供的1979—2010年ERA-Interim再分析资料,计算了其夏季水汽输送通量和净水汽收支。结果表明:(1)云贵高原夏季平均降水分布不均匀,存在区域差异:云贵高原西部的中部为降水量低值区,其向南、向西逐渐增加;东部由其东南部向西北部递减的分布形式。(2)将云贵高原分成两个区域,东、西部区域的降水都呈增加的趋势,降水量较高的区域降水增长速度较快。(3)大气中的水汽从云贵高原南边界和西边边界进入,从北边界和东边界流出,全区以净水汽输出为主,输出值与降水的变化都呈增长趋势。其中东部水汽为净输入;西部为净输出,向各区域的水汽输送量逐渐增加与各区降水量呈增长趋势变化同样相一致。(4)影响西部夏季降水的水汽主要源于孟加拉湾北部、南海北部和横断山到四川盆地地区,而东部水汽主要来自南海北部和四川盆地西部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号