首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用国际照明委员会CIE LAB色度坐标,定量描述了翡翠的绿色,分析了颜色的分布情况,总结其分布规律,建立起翡翠绿色L*a*b*C*hab的分布关系。当明度较小时,色调角几乎不变,彩度和明度呈现近似的线性相关;当明度变大时,色调角的变化幅度稍大,彩度值在明度中等偏低时变为最大。这些信息将在很大程度上对翡翠绿色分级的细化起到积极作用,可以用来指导翡翠色卡的制备。  相似文献   

2.
Surface changes on crystalline stones due to salt crystallisation   总被引:1,自引:0,他引:1  
This study assesses the changes on the surface of crystalline stones due to salt crystallisation. Efflorescence was forced to grow on the surface of granite and marbles through 60 cycles of salt crystallisation with sodium sulphate. Changes on surface roughness, gloss and colour were measured every 15 cycles and the specimens were examined with naked eye and SEM. Sodium sulphate produces damage which depends on mineral composition. Results show that granites experience a mechanical decay with an increase in roughness. Peaks of mica can be observed on the surface and cracks widen and grow deeper. Colour and gloss do not show any significant change, although gloss decreases with an increase in surface roughness. In marbles, the decay is mainly chemical. Surface roughness increases due to dissolution of the calcite. White marbles exhibit yellowing. Gloss decreases during the first cycles—as grain boundaries become more visible—but tends to regain almost its initial value as the number of cycles increases. In this case, gloss does not show any relation with surface roughness.  相似文献   

3.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

4.
This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith.The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite—hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts.Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends.Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720°C. In the south ilmenite and manganian fayalite indicate fO2 of 10?17 or 10?18 bars. Biotite and fayalite compositions and the ‘granite minimum’ imply completion of crystallization at about 700°C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity.All types of syenite and granite contain 5–6% K2O through a range of SiO2 of 63–76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03–0.4%; FeO averages 1.9–2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%.The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite, Mass., and syenite of Kungnat, Greenland, among others — allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence.A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid — mostly olivine, clinopyroxene and plagioclase.  相似文献   

5.
再论花岗岩按照Sr-Yb的分类:标志   总被引:41,自引:14,他引:27  
张旗  金惟俊  李承东  王元龙 《岩石学报》2010,26(4):985-1015
2006年作者曾经按照Sr=400×10~(-6)和Yb=2×10~(-6)作为标志将花岗岩分为埃达克岩、喜马拉雅型花岗岩、浙闽型花岗岩和广西型花岗岩,在浙闽型中又分出南岭型(Sr100×10~(-6)和Yb2×10~(-6)),于是花岗岩被分为5类。Sr=400×10~(-6)和Yb=2×10~(-6)是根据阿留申群岛中的Adak岛的资料得出来的。本文统计了全球花岗岩6000多个数据(其中,埃达克型花岗岩为2810个,喜马拉雅型花岗岩636个,浙闽型花岗岩1183个,南岭型花岗岩1518个,广西型花岗岩142个,总共6289个),统计的结果,各类花岗岩的地球化学特征大致如下:(1)埃达克型花岗岩富Al_2O_3和Sr,贫Y和Yb,具较高和变化的铕异常,绝大多数样品的Sr300×10~(-6),Yb2.5×10~(-6)(当Sr=400×10~(-6)~600×10~(-6)时Yb值最大,Sr超过600×10~(-6),Yb降低至2×10~(-6)),Al_2O_3在14%~18%之间,Eu/Eu~*大多在0.6~1.2范围;(2)喜马拉雅型花岗岩贫Sr和Yb,具中等的Al_2O_3和变化的Eu/Eu~*,Sr300×10~(-6)和Yb2×10~(-6)(少数Sr300×10~(-6)),Al_2O_3为13%~17%,Eu/Eu~*为0.2~1.0;(3)浙闽型花岗岩贫Sr富Yb,Sr在40×10~(-6)~400×10~(-6)之间,Yb1.5×10~(-6),Al_2O_3和Eu/Eu~*的变化类似喜马拉雅型花岗岩,Al_2O_3为12%~17%,Eu/Eu~*为0.4~1.0;(4)南岭型花岗岩以很低的Sr、Al_2O_3和Eu/Eu~*以及很高的Yb而不同于上述各类花岗岩,通常Yb1.5×10~(-6),Sr100×10~(-6)(Yb变化大,绝大多数2×10~(-6);当Yb在2×10~(-6)~8×10~(-6)时,部分样品Sr可100×10~(-6),但很少200×10~(-6));Al_2O_314%,集中在11%~13%之间,Eu/Eu~*0.7,大多0.4;Yb越大,Sr越低,负铕异常越明显。文中讨论了花岗岩Sr-Yb分类的意义,指出本分类适用于产于大陆和海洋的绝大多数中酸性岩浆岩(可能不适用于一部分特别富铁和钾的花岗岩,如具有高Sr和Yb特征的广西型花岗岩)。不同类型的花岗岩主要反映了源区压力的不同,而源区成分、温度、部分熔融程度、水和挥发分的加入以及岩浆混合等的影响可能是次要的。文中指出,该分类的依据、其实质,是熔体与残留相平衡的理论。与浙闽型花岗岩平衡的残留相是斜长石,与喜马拉雅型花岗岩平衡的是斜长石+石榴石,与埃达克型花岗岩平衡的是石榴石,与南岭型花岗岩平衡的是富钙的斜长石。文中指出,加强实验岩石学研究,将年代学和地球化学研究密切结合起来是深化花岗岩研究的关键。  相似文献   

6.
Whole rock elemental and Sr–Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810–580 Ma), and is dominated by crust-derived relatively low-T (850–750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (−8 to −10) and highest mg# (30–40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96–1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595–580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (−12 to −18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0–2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714–0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd–Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The Ediacaran granites are coeval with profuse granite magmatism attributed to continental arc magmatism in northern Ribeira and Araçuaí belts. However, their evolved compositions with low mg# and dominantly peraluminous character are unlike those of magmatic arc granites, and they are more likely products of post-collisional magmatism or correspond to an inner belt of crust-derived granites.  相似文献   

7.
Summary A number of small Palaeoproterozoic granitoid plutons were emplaced in the Khetri Copper Belt, which is an important Proterozoic metallogenic terrane in the northeastern part of Aravalli mountain range. Contiguous Biharipur and Dabla plutons are located about 15 km southeast of Khetri, close to a 170 km long intracontinental rift zone. The plutons are composed of amphibole-bearing alkali-feldspar granites, comprising microcline-albite granite, albite granite and late-stage microgranite. The albite granite in Biharipur is confined to the margins of the pluton, and shows extensive commingling with the synchronous mafic plutonics. Geochemically, the albite granites are characterised by low K2O (∼0.5 wt.%) and elevated Na2O (∼7.0 wt.%) abundances. By contrast, the microcline-albite granite does not show any significant mafic-granite interactions and shows normal concentrations of alkali elements. The granitoids display high concentrations of the rare earth (except Eu) and high field strength elements, high values of Ga/Al (>2.5), agpaitic index and Fe*-number. These features together with their alkaline metaluminous and ferroan nature classify the rocks as typical A-type within-plate granites. All the granitoid facies display similar REE and incompatible element profiles indicating their cogenetic nature. These granitoids were emplaced in a shallow crustal chamber under relatively low pressures, high temperature (≥850 °C) and relatively oxidising conditions. The oxidised nature, HFSE concentrations and Nd isotope data (ɛNd = −1.3 to −2.9) favour derivation of these granitoid rocks from crustal protoliths. The generation of albite granite is attributed to the replacement of alkali feldspar and plagioclase of the original granite by pure albite as a consequence of pervasive infiltration of a high Na/(Na + K) fluid at the late-magmatic stage. This model may have wider significance for the generation of albite granites/low-K granites or albitites in other areas. The A-type plutonism under consideration seems to be an outcome of ensialic rifting of the Bhilwara aulacogen.  相似文献   

8.
影响花岗质石材抛光性因素的研究   总被引:19,自引:5,他引:14  
研究表明,花岗石的抛光光泽度与岩石中各种矿物的光学性质密切相关,同时受岩石的结构、构造、风化变色以及岩石中发育的节理等多种因素的影响.随着风化变色度及节理密度的增加,抛光光泽度出现下降的趋势.因而,有关岩石材料抛光性的岩石学、风化岩石学以及构造地质学的研究是石材评价和开发中的重要问题.  相似文献   

9.
The Huangshaping granites in Hunan Province, South China were investigated for their geochemical characteristics. Three types of granites have been petrographically identified: quartz porphyry, granophyre, and granite porphyry. Whole rock geochemistry suggests that the Huangshaping granites, especially the granite porphyry, exhibit typical A-type granite characteristics with their enrichment in Si, Rb, U, Th, and Nb and significant depletion in Ba, Sr, Ti, Eu, and P. Based on the Al, Y and Zr contents as well as the REE patterns of the rocks investigated, the quartz porphyry and the granophyre are classified as A1 type alkaline granites whereas the granite porphyry is considered as A2 type aluminous granite. Whole rock and quartz/feldspar O isotope data yields a wide range of δ18OSMOW values (11.09–26.32‰). The granites are characterized by high radiogenic Pb isotopic composition. The present-day whole rock Pb isotopic ratios are 206Pb/204Pb = 18.706–19.155, 207Pb/204Pb = 15.616–15.711 and 208Pb/204Pb = 38.734–39.296. Combining the O–Pb isotope compositions with major, trace and REE geochemistry and regional geology characteristics, the Huangshaping granites were determined to resemble within-plate granites that were mainly derived from a felsic infracrustal source related to continental extension. The magma source of the quartz porphyry and the granophyre may have been generated from deeper depths, and then ascended rapidly with limited water content and low oxygen fugacity, which contributed to Cu, Pb and Zn mineralization. On the other hand, the magma that generated the granite porphyry may have ascended relatively slower and experienced pronounced crystal fractionation, upper-crustal basement rock contamination (assimilation) and wall–rock interaction, producing the Sn- and W-rich granite porphyry. This study reveals the crustal extension process and associated magmatic–metallogenic activities during 180–150 Ma in South Hunan.  相似文献   

10.
扎日加花岗岩直接侵入到已发生褶皱的三叠纪地层中,岩石类型主要为花岗闪长岩和二长花岗岩,两者呈渐变过渡关系,岩石具粗粒结构或斑状结构。地球化学研究显示,北巴颜喀拉扎日加花岗岩具有高硅〔w(SiO2)为66·29%~73·03%〕、高碱(ALK=6·59~9·26)、过铝质(ASI=1·45~1·648)的特征;稀土元素球粒陨石标准化图解表现出轻稀土元素相对富集,重稀土元素相对亏损,具中等至弱Eu的负异常;原始地幔标准化蛛网图表现出相对富集Cs、Rb、Ba、U等大离子亲石元素及LREE,亏损Nb、Ta、Zr、Hf、HREE等高场强元素,指示其为壳源型高钾钙碱性系列的强过铝质S型花岗岩。在主量元素构造判别图解FeO*/(FeO*+MgO)-SiO2和R1-R2及微量元素构造判别图解Rb-(Y-Nb)、Rb-(Yb+Ta)、Ta-Yb、Nb-Y及Rb-H-fTa上,所有点均落于同碰撞或后碰撞花岗岩区,且都落于Sr-Yb图的低Sr、低Yb区,表明扎日加花岗岩形成于巴颜喀拉山造山带陆内碰撞造山阶段的同碰撞至后碰撞初期,为挤压向拉张构造体制转变的过渡时期,以挤压构造环境为主。LA-ICP-MS微区原位U-Pb定年获得该岩体的侵位时间为200Ma左右,属晚三叠世—早侏罗纪,表明大场地区处于巴颜喀拉造山带陆内碰撞造山阶段的同碰撞向后碰撞初过渡时期,并且至少在(193±4)Ma时已进入伸展构造环境。对比已有的大场金矿成矿年龄,显示扎日加花岗岩与大场金矿的形成均为巴颜喀拉造山带陆内碰撞造山阶段的产物成岩与成矿之间可能存在内在联系。  相似文献   

11.
This work presents isotope Sm-Nd data obtained for bulk samples of granites of all 8 emplacement phases of the Raumid granite massif, which occurred 35 Ma ago at a hypabyssal depth during the orogenic stage of development of Southern Pamir fold system. The 147Sm/144Nd ratio in studied collection of granite samples ranges between 0.091 and 0.323; the εNd(T) value is–4.0. The Sm-Nd isotope study results suggest that all granite varieties distinguished in the Raumid massif are comagmatic formations and contamination and hybridization processes did not play any role in REE distribution in granites. At this, the source of parental magma did not change during granite generation. We assume that the only process, resulted in the trace element evolution in granites, was differentiation of three batches of magma sequentially uplifted from the source.  相似文献   

12.
澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义   总被引:7,自引:5,他引:2  
王舫  刘福来  刘平华  施建荣  蔡佳 《岩石学报》2014,30(10):3034-3050
临沧花岗岩是滇西地区出露面积最大的复式岩基,它是特提斯构造域的重要组成单元,是研究古特提斯俯冲-碰撞的重要窗口。本文通过对澜沧江南段澜沧-景洪地区广泛出露的临沧花岗岩的岩石学、地球化学以及锆石年代学综合分析,系统阐述该区花岗岩的原岩性质以及其形成的构造背景。临沧花岗岩主要岩石类型为黑云母二长花岗岩和花岗闪长岩。锆石LA-ICP-MS U-Pb年代学结果表明,该区临沧花岗岩侵位时代为217~233Ma。前人在澜沧江北段花岗岩也获得相似的侵位年龄,表明临沧花岗岩的南段与北段在形成时代上具有一致性。继承锆石U-Pb年龄主要峰期集中在2494Ma、1832Ma、1382Ma、959Ma、774Ma、482Ma,指示临沧花岗岩具丰富的物质来源。全岩主微量元素分析结果显示,临沧花岗岩的Na2O/K2O比值低,铝饱和指数(A/NCK值)大于1,属高钾钙碱性系列,过铝质花岗质岩石。轻重稀土分异明显,轻稀土相对富集,具有明显的铕负异常(Eu/Eu*=0.39~0.63);相容元素Cr和Ni含量较低,富集大离子亲石元素Rb和Ba,亏损高场强元素Nb-Ta和Zr-Hf。地球化学特征显示,临沧花岗岩来源于地壳沉积物的部分熔融,属S型花岗岩,形成于古特提斯洋闭合后的构造伸展阶段。  相似文献   

13.
《Precambrian Research》2003,120(1-2):101-129
A paleomagnetic and 40Ar/39Ar study of a 630-Ma alkaline granite suite in Madagascar, the so-called ‘stratoid’ granites, reveals a complex history of remagnetization during the formation of the Antananarivo Zone de Virgation at ∼560 Ma (D2) and the Angavo shear zone at ∼550 Ma (D3). 40Ar/39Ar dating of hornblende, biotite and potassium feldspar from rocks affected by D2/D3 show initial cooling rates of 8 °C/Ma during the 550–520 Ma interval followed by slower cooling of 2.5 °C/Ma. The thermal effects of the D2 and D3 events appear to be restricted to regions surrounding the shear zones as evidenced by a 40Ar/39Ar biotite age of 611.9±1.7 Ma north of the virgation zone. The paleomagnetic data from the stratoid granites are complex and some sites, particularly in areas to the north of the virgation zone, may have been rotated about non-vertical axes following their emplacement and cooling. Because of these possible rotations, our best estimate for the paleomagnetic pole for Madagascar is derived from sites within the virgation zone. This pole falls at 6.7°S, 352.6°E (a95=14.2°). A post-metamorphic cooling history for the virgation zone indicates a magnetization age of 521.4±11.9 Ma. Our work in central Madagascar, coupled with previous studies, suggests that emplacement of the 630 Ma stratoid granites followed a collisional (?) tectonic event beginning around 650 Ma, recently recognized in southern Madagascar and in Tanzania. Subsequently, the stratoid granites in the Antananarivo virgation zone were reheated (∼750–800 °C) at pressures between 3.5 and 3.6 kbars resulting in a pervasive remagnetization. We suggest that the younger shear events are genetically related to collisional tectonics elsewhere during the final stages of Gondwana assembly and are a consequence of the Kuunga Orogeny further south.  相似文献   

14.
Sn4+ is generally the dominant form of tin in magnetite-series granites as shown by the presence of cassiterite or its incorporation into Ti-bearing minerals such as biotite and titanite. Little is known about the behavior of tin in magnetite. The Huashan granite is an oxidized tin granite in the Nanling Range, southern China, where it contains magnetite as the dominant Fe oxide mineral. It is included in biotite as an early phase and also as interstitial grains spatially associated with ilmenite, cassiterite, Sn-rich titanite (SnO2 up to 5.9?wt.%), fluorite and apatite. This association indicates that tin enrichment occurred during the late stage of magma crystallization. Ilmenite lamellae display a trellis structure consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Micro-inclusions of cassiterite (<1?μm in size) are found only within ilmenite lamellae. This suggests that magnetite with cassiterite inclusions is likely an indicator mineral of oxidized tin granites. Although rare in nature, Sn-bearing magnetite from weathered granites where concentrated in stream sediments, may serve as a strategic tracer for tin exploration in granite districts and in placer deposits, in general.  相似文献   

15.
The granite plutons of Vattamalai (VT), Gangaikondan (GK) and Pathanapuram (PT) intruding granulite facies rocks in southern India were emplaced during the Late Neoproterozoic tectonothermal event. Feldspar thermometry of mesoperthites from the granites yield temperatures of 800–1000?°C indicating high- to ultrahigh-temperature conditions, comparable to similar estimates derived from some of the host granulite facies rocks in the region. This study reports results from a detailed investigation of fluid inclusions in the three granite plutons. Carbonic inclusions characterize the major fluid species in all the cases and their unique abundance in some of these plutons indicates up to 1 wt.% CO2. In most of the cases, the inclusions show a near-pure CO2 composition as deduced from melting temperatures which cluster close to ?56.6°C, and as confirmed by laser Raman spectroscopy. The VT granite preserves the highest density CO2 fluids among all the three plutons with a density up to 0.912 g?cm?3 (molar volume of 48.25 cm3?mol?1). A combination of CO2 isochores, feldspar thermometry data and dehydration melting curves, and liquidus for water-undersaturated granitic systems clearly bring out a genetic link between these granites and granulitic lower crust. The ultimate origin of the CO2-rich fluids is linked to sub-lithospheric mantle sources through tectonic processes associated with the assembly of the Gondwana supercontinent. To cite this article: M. Santosh et al., C. R. Geoscience 337 (2005).  相似文献   

16.
We report in the paper integrated analyses of in situ zircon U–Pb ages, Hf–O isotopes, whole-rock geochemistry and Sr–Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U–Pb dating results yield a crystallization age of ∼73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04–1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti–Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073–0.7107) and εNd(t) (−4.6 to −6.6) and zircon εHf(t) (−5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9–8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80–70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east–southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90–85 Ma as previously thought.  相似文献   

17.
Two Neoarchean alkaline feldspar-rich granites sourced from partially melted granulite-facies granodioritic orthogneiss have been here recognised in the eastern part of the North China Block (NCB). These poorly foliated granites have previously been assumed to be Mesozoic in age and never dated, and so their significance has not been recognised until now. The first granite (AG1) is a porphyritic syenogranite with megacrystic K-feldspar, and the second (AG2) is a quartz syenite with perthitic megacryst. Zircons from the granites yield LA-ICP-MS U-Pb ages of 2499 ± 10 Ma (AG1), and 2492 ± 28 Ma (AG2), which are slightly younger than the granodioritic orthogneiss that they intrude with a crystallisation U-Pb age of 2537 ± 34 Ma. The younger granites have higher assays for SiO2 (71.91% for AG1 and 73.22% for AG2) and K2O (7.52% for AG1 and 8.37% for AG2), and much lower assays for their other major element than the granodioritic orthogneiss. All of the granodioritic orthogneiss and granite samples have similar trace element patterns, with depletion in Th, U, Nb, and Ti and enrichment in Rb, Ba, K, La, Ce, and P. This indicates that the granites are derived from the orthogneiss as partial melts. Although they exhibit a similar REE pattern, the granites have much lower total REE contents (30.97×10−6 for AG1, and 25.93×10−6 for AG2), but pronounced positive Eu anomalies (Eu/Eu* = 8.57 for AG1 and 27.04 for AG2). The granodioritic orthogneiss has an initial 87Sr/86Sr ratio of 0.70144, εNd(t) value of 3.5, and εHf(t) values ranging from −3.2 to +2.9. The orthogneiss is a product of fractional crystallisation from a dioritic magma, which was derived from a mantle source contaminated by melts derived from a felsic slab. By contrast, the AG1 sample has an initial 87Sr/86Sr ratio of 0.6926 that is considered too low in value, εNd(t) value of 0.3, and εHf(t) values between +0.57 and +3.82; whereas the AG2 sample has an initial 87Sr/86Sr ratio of 0.70152, εNd(t) value of 1.3, and εHf(t) values between +0.5 and +14.08. These assays indicate that a Sr-Nd-Hf isotopic disequilibrium exists between the granite and granodioritic orthogneiss. The elevated εHf(t) values of the granites can be explained by the involvement of Hf-bearing minerals, such as orthopyroxene, amphibole, and biotite, in anatectic reactions in the granodioritic orthogneiss. Based on the transitional relationship between the granites and granodioritic orthogneiss and the geochemical characteristics mentioned above, it is concluded that the granites are the product of rapid partial-melting of the granodioritic orthogneiss after granulite-facies metamorphism, and their crystallisation age of about 2500 Ma provides the minimum age of the metamorphism. This about 2500 Ma tectonic-metamorphic event in NCB is similar to the other cratons in India, Antarctica, northern and southern Australia, indicating a possible connection between these cratons during the Neoarchean.  相似文献   

18.
In the Segura area, Variscan S-type granites, aplite veins and lepidolite-subtype granitic aplite-pegmatite veins intruded the Cambrian schist-metagraywacke complex. The granites are syn D3. Aplite veins also intruded the granites. Two-mica granite and muscovite granite have similar ages of 311.0 ± 0.5 Ma and 312.9 ± 2.0 Ma but are not genetically related, as indicated by their geochemical characteristics and (87Sr/86Sr)311 values. They correspond to distinct pulses of magma derived by partial melting of heterogeneous metapelitic rocks. Major and trace elements suggest fractionation trends for: (a) muscovite granite and aplite veins; (b) two-mica granite and lepidolite-subtype aplite-pegmatite veins, but with a gap in most of these trends. Least square analysis for major elements, and modeling of trace elements, indicate that the aplite veins were derived from the muscovite granite magma by fractional crystallization of quartz, plagioclase, K-feldspar and ilmenite. This is supported by the similar (87Sr/86Sr)311 and δ18O values and the behavior of P2O5 in K-feldspar and albite. The decrease in (87Sr/86Sr)311 and strong increase (1.6‰) in δ18O from two-mica granite to lepidolite-subtype aplite-pegmatite veins, and the behaviors of Ca, Mn and F of hydroxylapatite indicate that these veins are not related to the two-mica granite.  相似文献   

19.
《China Geology》2022,5(3):457-474
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere’s counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.©2022 China Geology Editorial Office.  相似文献   

20.
Granite weathering profiles are widely distributed in South China. Their engineering and geological characteristics are major geotechnical subjects that are important in the design and construction of civil engineering projects. This paper presents a summary of the weathering characteristics and zoning of granite weathering profiles in South China and discusses their engineering and geological properties. A five-grade scheme has been adopted in the zoning of a granite weathering profile. Studies have shown that the completely weathered granites (CWG) in South China have the following characteristics: low moisture content, low to medium plasticity (WL=22.5–39.0%; Ip=6.5–11.8%), medium void ratio (0.36–1.29), weak shrinkage and medium compressibility (a1–2=0.24–0.8MPa−1) and high shear strength (φ=20–30°; c=20–40KPa). The CWGs are usually at a low or high plastic state and most of them are over-consolidated soils. A majority of the physical and mechanical properties have good statistical correlations with the degree of weathering. The data presented in the paper are important in geotechnical engineering projects such as slope stability evaluation in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号