首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study.  相似文献   

2.
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.  相似文献   

3.
We present an analysis of VIRTIS-M-IR observations of 1.74 μm emission from the nightside of Venus. The 1.74 μm window in the near infrared spectrum of Venus is an ideal proxy for investigating the evolution of middle and lower cloud deck opacity of Venus because it exhibits good signal to noise due to its brightness, good contrast between bright and dark regions, and few additional sources of extinction beside the clouds themselves. We have analyzed the data from the first 407 orbits (equivalent to 407 Earth days) of the Venus Express mission to determine the magnitude of variability in the 1.74 μm radiance. We have also performed an analysis of the evolution of individual features over a span of roughly 5–6 h on two successive orbits of Venus Express. We find that the overall 1.74 μm brightness of Venus has been increasing through the first 407 days of the mission, indicating a gradual diminishing of the cloud coverage and/or thickness, and that the lower latitudes exhibited more variability and more brightening than higher latitudes. We find that individual features evolve with a time scale of about 30 h, consistent with our previous analysis. Analysis of the evolution and motion of the clouds can be used to estimate the mesoscale dynamics within the clouds of Venus. We find that advection alone cannot explain the observed evolution of the features. The measured vorticity and divergence in the vicinity of the features are consistent with evolution under the influence of significant vertical motions likely driven by a radiative dynamical feedback. We measure a zonal wind speed of around 65 m/s, and a meridional wind speed around 2.5 m/s by tracking the motion of the central region of the features. But we also find that the measured wind speeds depend strongly on the points chosen for the wind speed analysis.  相似文献   

4.
Day-to-day and hour-to-hour changes in the large-scale atmospheric and surface features of the planets can now be studied more effectively than previously possible. Since 1969 a network of observatories has obtained almost uninterrupted photographic coverage during all apparitions of Jupiter and Mars, plus some of Venus. Patrol films and catalogues are available to the scientific community. Recent or current analyses include the distribution and motion of clouds on Mars, the development and decay of Martian dust storms, the seasonal, diurnal and random fluctuations in contrast between adjacent light and dark regions on Mars, the detection of vertical shear in the Jovian atmosphere, the longitudinal oscillation of the Red Spot, the dependence of rotation period on xenographic latitude and on time, the eruption and spread of SEB disturbances, and the retrograde circulation of the Venus cloud deck.  相似文献   

5.
Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude–latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude–latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude–latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude–latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude–latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.  相似文献   

6.
Jerome Apt  Johnny Leung 《Icarus》1982,49(3):427-437
A search was made for periodic fluctuations in the thermal brightness temperatures recorded by the Pioneer Venus orbiter's infrared radiometer. Data were averaged in 10 × 10° latitude-longitude bins for each of the 72 days the instrument was in operation. This time series of thermal brightness temperatures was then analyzed to determine the amplitude of fluctuations at periods from 2 to 64 days at four levels in the atmosphere (at the cloud tops and at approximately 70, 80, and 90 km). The amplitude of such fluctuations is small at equatorial latitudes and increases to a maximum at 60–70° latitude at most altitudes. The period of the highest amplitude fluctuation is 5.3±0.4 days (at all altitudes) except at 70–80°, where a 2.9-day period which appears to correspond to the polar dipole dominates the cloud-top channel. The amplitude of the periodic fluctuations is a maximum at the cloud tops, decreasing to a minimum at the 80-km channel, and increasing again at the 90-km channel.  相似文献   

7.
J.T. Schofield  F.W. Taylor 《Icarus》1982,52(2):245-262
Improved calculations of net emission from the northern hemisphere of Venus are presented. These are based on temperature profiles, water vapor mixing ratio profiles, and cloud models retrieved in 120 solar-fixed latitude-longitude bins from infrared measurements in six spectral channels made over a period of 72 days by the orbiter infrared radiometer (OIR) instrument of the Pioneer Venus mission. Only carbon dioxide, sulfuric acid cloud, and water vapor are considered as significant sources of atmospheric opacity, and the role of the latter component is found to be minor. The sensitivity of the calculations to extreme alternative cloud models, measurement errors, and calibration errors is also discussed. Net emission is found to be only weakly dependent on latitude and longitude during the period of observation with the exception of the high-latitude polar collar region, where emission is low. Mean net emission from the northern hemisphere is 157.0 ± 6.9 W.m?2, corresponding to an equivalent temperature of 229.4 ± 2.5°K. If this figure is characteristic of the whole planet and if thermal balance is assumed, the bolometric albedo of Venus is 0.762 ± 0.011. This value is consistent with the latest estimates within experimental error.  相似文献   

8.
Comparisons are made between observations of spatial variations in the thermal emission from Venus obtained with ground-based telescopes and those from spacecraft. In particular, we concentrate on measurements of solar-related structure at low and mid-latitudes, limb-darkening, and on the high-contrast polar structure. We conclude that (1) the solar-related emission is predominantly wavenumber 2, although it contains a significant diurnal component; (2) the relative amplitudes of the semidiurnal and diurnal components vary with latitude; (3) thermally excited temperature waves or, alternatively, solar-driven vertical motions of the cloud top are better able to account for the magnitude of the solar-locked emission than brightness temperature contrasts resulting from variations in aerosol microphysical properties; (4) the equatorial limb-darkening shows the top of the main cloud to be diffuse and approximately uniformly mixed with the gas; (5) polar collars are persistent at least for several months but disappear on occasion; and (6) collars have been observed at both poles simultaneously, but whether simultaneous appearance is the exception or the rule is still in question.  相似文献   

9.
Curt Covey  Gerald Schubert 《Icarus》1981,47(1):130-138
Ultraviolet albedo contrasts in the Venus atmosphere are probably large-scale atmospheric waves propagating slowly with respect to the rapid cloud-top zonal winds. Using a simple theoretical model and profiles of mean wind and thermal structure based on Pioneer Venus data, we find planetary-scale gravity waves with phase velocities matching the speeds of the uv markings. We propose an upward-propagating wave and waves trapped at cloud levels as candidates to explain the observed uv features.  相似文献   

10.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

11.
The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (~200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (~80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.  相似文献   

12.
We present a map of the global mean lower cloud coverage of Venus. This map is the average of 35 nights of 2.26 μm night side observations taken at NASA's Infrared Telescope Facility on Mauna Kea, over the years spanning 2001-2007. The atmosphere of Venus is a very dynamic system, and the lower clouds are constantly changing [Crisp, D., Allen, D.A., Grinspoon, D.H., Pollack, J.B., 1991a. The dark side of Venus: near-infrared images and spectra from the Anglo-Australian Observatory. Science, 253, 1263-1266]. By studying average cloud coverage, the daily variations are suppressed in order to see the underlying persistent cloud pattern. We find a relatively thick but highly variable equatorial band of clouds (±20° in latitude) and more quiescent mid-latitude clouds that are less opaque on average, with persistent cloudiness near the poles. We show that there is enough variation between our daily observations or between observations taken in different months that they cannot be considered individually representative of the global mean. We also compare the cloud coverage map to the topography of Venus and find no definitive correlations with high altitude features.  相似文献   

13.
The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an ‘M-class’ mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55?km, where temperatures and pressures are benign (~25°C and ~0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond.  相似文献   

14.
Polarimetry is able to show direct evidence for compositional differences in the Venus clouds. We present observations (collected during 212 Venus years by the Pioneer Venus Orbiter) of the polarization in four colors of the bright and dark ultraviolet features. We find that the polarization is significantly different between the bright and dark areas. The data show that the “null” model of L. W. Esposito (1980, J. Geophys. Res.85, 8151–8157) and the “overlying haze” model of J. B. Pollack et al. (1980, J. Geophys. Res.85, 8223–8231) are insufficient. Exact calculations of the polarization, including multiple scattering and vertical inhomogeneity near the Venus cloud tops, are able to match the observations. Our results give a straightforward interpretation of the polarization differences in terms of known constituents of the Venus atmosphere. The submicron haze and uv absorbers are anticorrelated: for haze properties as given by K. Kawabata et al. (1980, J. Geophys. Res.85, 8129–8140) the excess haze depth at 9350 Å over the bright regions is Δτh = 0.03 ± 0.02. The cloud top is slightly lower in the dark features: the extra optical depth at 2700 Å in Rayleigh scattering above the darker areas is ΔτR = 0.010 ± 0.005. This corresponds to a height difference of 1.2 ± 0.6 km at the cloud tops. The calculated polarization which matches our data also explains the relative polarization of bright and dark features observed by Mariner 10. The observed differential polarization cannot be explained by differential distribution of haze, if the haze aerosols have an effective size of 0.49 μm, as determined by K. Kawabata et al. (1982, submitted) for the aerosols overlying the Venus equator. We propose two models for the uv contrasts consistent with our results. In a physical model, the dark uv regions are locations of vertical convergence and horizontal divergence. In a chemical model, we propose that the photochemistry is limited by local variations in water vapor and molecular oxygen. The portions of the atmosphere where these constituents are depleted at the cloud tops are the dark uv features. Strong support for this chemical explanation is the observation that the number of sulfur atoms above the cloud tops is equal over both the bright and dark areas. The mass budget of sulfur at these altitudes is balanced between excess sulfuric acid haze over the bright regions and excess SO2 in the dark regions.  相似文献   

15.
Near-infrared brightness temperature contrasts observed on the night side of Venus indicate variations in the size and distribution of particles in the lower and middle cloud decks. McGouldrick and Toon [McGouldrick, K., Toon, O.B., 2007. Icarus 191, 1-24] have shown that these changes can be explained by large-scale dynamics; in particular, that downdrafts may produce optical depth “holes” in the clouds. The lifetimes of these holes are observed to be moderately short, on the order of ten days. Here, we explore a simple model to better understand this lifetime. We have coupled a microphysical model of the Venus clouds with a simple, two-dimensional (zonal, vertical) kinematical transport model to study the effects of the zonal flow on the lifetime of the holes in the clouds. We find that although wind shear may be negligible within the cloud itself, the shear that is present near the top and the bottom of the statically unstable cloud region can lead to changes in the radiative-dynamical feedback which ultimately lead to the dissipation of the holes.  相似文献   

16.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

17.
The source IRAS 03134 + 5958 identified by Iyengar & Verma (1984) on the Palomar Observatory Sky Survey (POSS) prints with a nonstellar optical object with [P – R]≃ 5.3 ± 1.5 is near the edge of Lynds dark cloud No. 1384 and is either embedded in or behind the cloud. The galactic latitude of this source (b II = 2‡.3), its positionvis-a-vis the Lynds dark cloud, its nonstellar appearance, high [P – R] colour and its far-infrared spectrum, all suggest the possibility of its being a Herbig-Haro (HH) object. To test this possibility we undertook measurements of its proper motion and variability (two of the characteristic properties of HH objects). These yield μa = (3.6 ± 2.3) arcsec/century and μδ= (−1.2 ± 2.0) arcsec/century for its proper motion. The source reveals large variation in brightness between 1950 and 1954. Optical line studies of the source are required to confirm its classification as an HH object.  相似文献   

18.
A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5°S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and increasing with distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of ~140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7°N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75–100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 ± 0.7-day period. This oscillating motion has a wavelength of ~20° and a speed of 101 ± 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7°N and 7.5°S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.  相似文献   

19.
An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of ~0.3 m s?1 per Earth day.  相似文献   

20.
Observations of the spotted rotating G8 V star HII 296, a member of the Pleiades cluster, are presented. The star has exhibited stable periodic brightness variations for several years. The apparent rotation period of the star in our observations was 2.53 and 2.58 days. The shape and amplitude of its light curve changed from year to year. During our observational monitoring from September to November 2012, we recorded an almost complete absence of brightness variations in September. A rapid (within a few weeks) and manyfold increase in the brightness variability amplitude was observed in October and November 2012. The changes in the rotation period, amplitude, and shape of the light curve suggest an intense relative motion of spots in latitude and longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号