首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   0篇
  国内免费   1篇
地球物理   24篇
地质学   58篇
海洋学   4篇
天文学   9篇
自然地理   10篇
  2021年   4篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   12篇
  2005年   12篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
The Cassini plasma spectrometer (CAPS) instrument made measurements of Titan's plasma environment when the Cassini Orbiter flew through the moon's plasma wake October 26, 2004 (flyby TA). Initial CAPS ion and electron measurements from this encounter will be compared with measurements made by the Voyager 1 plasma science instrument (PLS). The comparisons will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements. The plasma wake trajectories of flyby TA and Voyager 1 are similar because they occurred when Titan was near Saturn's local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. They lead to the following: (A) The light and heavy ions, H+and N+/O+, were observed by PLS in Saturn's magnetosphere in the vicinity of Titan while the higher mass resolution of CAPS yielded H+ and H2+as the light constituents and O+/CH4+ as the heavy ions. (B) Finite gyroradius effects were apparent in PLS and CAPS measurements of ambient O+ ions as a result of their absorption by Titan's extended atmosphere. (C) The principal pickup ions inferred from both PLS and CAPS measurements are H+, H2+, N+, CH4+ and N2+. (D) The inference that heavy pickup ions, observed by PLS, were in narrow beam distributions was empirically established by the CAPS measurements. (E) Slowing down of the ambient plasma due to pickup ion mass loading was observed by both instruments on the anti-Saturn side of Titan. (F) Strong mass loading just outside the ionotail by a heavy ion such as N2+ is apparent in PLS and CAPS measurements. (G) Except for the expected differences due to the differing trajectories, the magnitudes and structures of the electron densities and temperatures observed by both instruments are similar. The high-energy electron bite-out observed by PLS in the magnetotail is consistent with that observed by CAPS.  相似文献   
2.
Summary. Multiparameter inversions of multimode dispersion data are performed for two large regions: the Pacific Ocean and North America. Anisotropy is taken into account by considering transversely isotropic structures with a vertical axis of symmetry. Two fundamental questions are studied in detail: (1) how to make the inverted models consistent when using different sets of parameters, (2) what is the significance of transversely isotropic inversion for the actual Earth's structure? It is proved that full consistency of the inverted models can be achieved by properly taking into account some a priori informations on the model and it is shown that the use of transversely isotropic models with vertical axis of symmetry does not cause severe limitations when interpreting the data. The models we have obtained are discussed in the light of these investigations. Considering an olivine-rich upper mantle, we make a tentative interpretation of these models in terms of preferred orientation of the a -axis of the crystals in one fixed horizontal direction.  相似文献   
3.
Avicennia pollen grains have been discovered in marine facies from the Middle Miocene deltaic series of Châteauredon (southeastern France). Based on the local stratigraphy, an age between 15.8 and 16.5 Ma is proposed for these grains. The age and the transgressive context of the Avicennia bearing-levels are in agreement with the maximum extension of the mangrove known in the western Mediterranean during interval N8–NN4 pro parte, in relation with the Langhian highstand. This mangrove occurrence at 42°N latitude during Middle Miocene is a more northern witness of the mangrove sites known in Languedoc and Provence areas. It also implies a lower climatic gradient than today. To cite this article: J.-J. Châteauneuf et al., C. R. Geoscience 338 (2006).  相似文献   
4.
5.
The Palaeoproterozoic units of Terre Adélie show two types of structural domains associated with HT–LP metamorphic conditions: domes and NS–N340° striking vertical shear zones. Shear zones reflect dextral transpressive motions. Domes reflect sub-vertical shortening and principal stretching subparallel to shear zones. They could partly result from longitudinal flow coeval with transpression. Deformations are comparable to those described along the eastern and western boundaries of the Archean Gawler Craton (South-East Australia), which underlines the continuity between these two areas before opening of the Austral Ocean. To cite this article: A. Pelletier et al., C. R. Geoscience 334 (2002) 505–511.  相似文献   
6.
We present a three-dimensional (3D) SV-wave velocity model of the upper mantle beneath the Antarctic plate constrained by fundamental and higher mode Rayleigh waves recorded at regional distances. The good agreement between our results and previous surface wave studies in the uppermost 200 km of the mantle confirms that despite strong differences in data processing, modern surface wave tomographic techniques allow to produce consistent velocity models, even at regional scale. At greater depths the higher mode information present in our data set allows us to improve the resolution compared to previous regional surface wave studies in Antarctica that were all restricted to the analysis of the fundamental mode. This paper is therefore mostly devoted to the discussion of the deeper part of the model. Our seismic model displays broad domains of anomalously low seismic velocities in the asthenosphere. Moreover, we show that some of these broad, low-velocity regions can be more deeply rooted. The most remarkable new features of our model are vertical low-velocity structures extending from the asthenosphere down to the transition zone beneath the volcanic region of Marie Byrd Land, West Antarctica and a portion of the Pacific-Antarctic Ridge close to the Balleny Islands hotspot. A deep low-velocity anomaly may also exist beneath the Ross Sea hotspot. These vertical structures cannot be explained by vertical smearing of shallow seismic anomalies and synthetic tests show that they are compatible with a structure narrower than 200 km which would have been horizontally smoothed by the tomographic inversion. These deep low-velocity anomalies may favor the existence of several distinct mantle plumes, instead of a large single one, as the origin of volcanism in and around West Antarctica. These hypothetical deep plumes could feed large regions of low seismic velocities in the asthenosphere.  相似文献   
7.
8.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
9.
Mount Bangou, an Eocene volcano (40K–40Ar ages between 44.7 and 43.1 ± 1 Ma) is the oldest dated volcano of the Cameroon Line. In this region, two magmatic series, evolving by fractional crystallization, show transitional affinities that are exceptionally known in this sector. Mineral compositions of basaltic rocks (scarce modal olivine and occurrence of normative hypersthene) as well as geochemical characteristics (low Ba, La, Ta contents and high Y/Nb ratios) are in agreement with this trend. The succession of magmas evolving in time from transitional to more typical alkaline compositions is evidenced in a continental setting. To cite this article: J. Fosso et al., C. R. Geoscience 337 (2005).  相似文献   
10.
This work provides five new U–Pb zircon dating and the corresponding Nd isotope data for felsic granulites from the south Itabuna-Salvador-Curaçá Block (ISCB), in the São Francisco Craton, Brazil. Three major sets of felsic granulites can be recognised. The oldest set is tonalitic in composition and of TTG affinity. It is Archaean in age with magmatic zircon cores dated at 2675 ± 11 Ma by LA-ICPMS and up to ca 2.7–2.9 Ga by SHRIMP on an other sample. It exhibits epsilon Nd values between ?8 and ?11 at 2.1 Ga. This Nd signature is similar to that of granulites found in the western Archaean Jequié Block. Cartographically, this set of Archaean terrains represents at least 50% of the granulites in the studied area. The second set corresponds to a Palaeoproterozoic calc-alkaline tonalitic suite with zircon ages from 2019 ± 19 Ma to 2191 ± 10 Ma and epsilon Nd values between ?3 and ?4 at 2.1 Ga, corresponding partially to a newly formed crust. The third set of granulites is also Palaeoproterozoic. It is shoshonitic to monzonitic in composition and synchronous with the high grade metamorphism dated by metamorphic zircons at 2086 ± 7 Ma (average of five samples). The Nd isotope signature for this alkaline set is similar to that of the Palaeoproterozoic calc-alkaline one. Nd isotopes appear to be a very efficient tool to distinguish Archaean from Palaeoproterozoic felsic protoliths in granulitic suites of the Itabuna-Salvador-Curaçá Block (ISCB). Finally, the southern part of the ISCB is composed of a mixture of Archaean and Palaeoproterozoic protoliths, in similar amounts, suggesting that it was probably an active margin between 2.1 and 2.2 Ga located on the eastern border of the Archaean Jequié Block. A major crustal thickening process occurred at ca 2.09 Ga in the ISCB and seems significantly younger towards the west, in the Jequié granulites, where an average of 2056 ± 9 Ma is determined for the high grade event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号