首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper applies nonlinear Bayesian inversion to seabed reflection data to estimate viscoelastic parameters of the upper sediments. The inversion provides maximum a posteriori probability (MAP) parameter estimates with uncertainties quantified in terms of marginal probability distributions, variances, and credibility intervals; interparameter relationships are quantified by correlations and joint marginal distributions. The inversion is applied to high-resolution reflectivity data from two sites in the Strait of Sicily. One site is characterized by low-speed sediments, resulting in data with a well-defined angle of intromission; the second is characterized by high-speed sediments, resulting in a critical angle. Data uncertainties are quantified using several approaches, including maximum-likelihood (ML) estimation, treating uncertainties as nuisance parameters in the inversion, and analysis of experimental errors. Statistical tests are applied to the data residuals to validate the assumed uncertainty distributions. Excellent results (i.e., small uncertainties) are obtained for sediment compressional-wave speed, compressional attenuation, and density; shear parameters are less well determined although low shear-wave speeds are indicated. The Bayesian analysis provides a quantitative comparison of inversion results for the two sites in terms of the resolution of specific geoacoustic parameters, and indicates that the geoacoustic information content is significantly higher for intromission data  相似文献   

2.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

3.
不确定海洋环境中基于贝叶斯理论的多声源定位算法   总被引:2,自引:0,他引:2  
环境参数失配导致定位性能大幅度下降是匹配场定位所面临的难题之一。应用贝叶斯理论对环境聚焦,是当前解决该难题的研究热点。环境聚焦方法的实质是将未知环境参数和声源位置联合优化估计,当出现多个目标时,估计的参数会随着声源个数成倍增加,因此不得不利用有限的观测信息来实现众多参数的估计。本文采用最大似然比方法,获得信号源谱和误差项的最大似然估计,实现这些敏感性较弱参数的间接反演,有效降低了反演参数维数和定位算法复杂度。针对遗传算法的早熟和稳定性差的问题,改进了似然函数的经验表达式。将多维后验概率密度在参数起伏变化范围内积分,得到反演参数的一维边缘概率分布,求解最优值的同时进行反演结果的不确定性分析。本文仿真了位于相同距离、不同深度的两个声源,使用仿真实验验证了提出算法的有效性。  相似文献   

4.
两种基于贝叶斯点估计理论的多声源定位方法研究   总被引:1,自引:1,他引:0  
海洋环境参数失配是制约匹配场定位性能的主要因素之一。为了克服环境失配,本文基于贝叶斯理论,将环境参数与声源的距离和深度一起作为未知量进行反演。然而在进行多声源定位时,反演参数的维数几何增长,极大地增加了反演问题的复杂性和计算量。为此本文将声源强度和噪声方差表示成其极大似然估计值,从而将这些参数进行隐式采样,大大降低了反演的维数和难度。文章比较了两种贝叶斯点估计方法,最大后验概率密度方法和最大边缘后验概率密度方法。最大后验概率密度方法的解是令后验概率密度取得最大值的参数组合,可以利用优化算法快速获得。最大边缘后验概率密度法将其他参数积分,得到目标参数的一维边缘概率分布,分布的最大值为反演结果。该方法得到最优估计值的同时可以获取参数估计的不确定信息。在环境参数和声源参数都未知的情况下,利用蒙特卡洛法在不同信噪比情况下对两种声源定位方法进行分析,实验结果表明:(1)对于敏感参数,如声源距离、水深和海水声速,最大边缘后验概率密度法比最大边缘后验概率密度方法的性能好。(2)对于较不敏感的参数,如海底声速、海底密度和海底声衰减,当信噪比较低时,最大边缘后验概率密度方法能较好地平滑噪声,从而比最大边缘后验概率密度法具有更好的性能。由于声源距离和深度是敏感参数,研究表明最大边缘后验概率密度法提供了一种在不确知环境下更可靠的多声源定位方法。  相似文献   

5.
A method is described for the estimation of geoacoustic model parameters by the inversion of acoustic field data using a nonlinear optimization procedure based on simulated annealing. The cost function used by the algorithm is the Bartlett matched-field processor (MFP), which related the measured acoustic field with replica fields calculated by the SAFARI fast field program. Model parameters are perturbed randomly, and the algorithm searches the multidimensional parameter space of geoacoustic models to determine the parameter set that optimizes the output of the MFP. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the MFP. The performance of the algorithm is demonstrated for a vertical line array in a shallow water enviornment where the bottom consists of homogeneous elastic solid layers. Simulated data are used to determine the limits on estimation performance due to error in experimental geometry and to noise contamination. The results indicate that reasonable estimates are obtained for moderate conditions of noise and uncertainty in experimental geometry  相似文献   

6.
Inversion methods have been developed over the past decade to extract information about unknown ocean-bottom environments from acoustic field data. This paper summarizes results from the Office of Naval Research/Space and Naval Warfare Systems Command (SPAWAR) Geoacoustic Inversion Techniques Workshop, which was designed to benchmark present-day inversion methods. The format of the workshop was a blind test to estimate unknown geoacoustic profiles by inversion of synthetic acoustic field data. The fields were calculated using a high-angle parabolic approximation and verified using coupled normal modes for three range-dependent shallow-water test cases: a monotonic slope; a shelf break; and a fault intrusion in the sediment. Geoacoustic profiles were generated to simulate sand, silt, and mud sediments in these environments. Several different approaches for inverting the acoustic field data were presented at the workshop: model-based matched-field methods; perturbation methods; methods using transmission loss data; and methods using horizontal array information. An effective inversion must provide both an estimate of the bottom parameters and a measure of the uncertainty of the estimated values. New methods were presented at the workshop to formalize the measure of uncertainty in the inversion. Comparisons between the different inversions are discussed in terms of a metric-based transmission loss calculated using the inverted profiles. The results demonstrate the effectiveness of present-day inversion techniques and indicate the limits of their capabilities for range-dependent waveguides.  相似文献   

7.
A method which utilizes the lateral offset information obtained by comparing swath bathymetric data at track crossover points as a further constraint on the navigation is presented. The method, based on generalized least squares inversion theory, derives a new navigational solution that minimizes the overall misfit between the pairs of topography at crossovers while trying to remain smooth and close to the starting model. To achieve a high numerical efficiency during inversions of large matrices, we employed sparse matrix algorithms. The inversion scheme was applied to a set of Sea Beam data collected over the East Pacific Rise near 9° 30' N in early 1988 at the time when the Global Positioning System had limited coverage. The starting model was constructed by taking evenly spaced samples of positions along the tracklines. For each one of the 361 crossovers, we gridded the bathymetric data around the crossover point compared the gridded maps, and calculated the offset and uncertainty associated with this estimation. A suite of inversion solutions were obtained depending on the choice of three free parameters (that is, the a priori model variance, the correlation interval of a priori model, and the trade-off coefficient between fitting the data and remaining close to the a priori model). The best solution was chosen as one that minimizes both the Sea Beam topography and free-air gravity anomaly differences at crossovers. The improvement was significant; the initial rms mismatch between the tracks and free-air gravity anomalies at crossovers was reduced from 610m to 75m and from 2.5mGal to 1.9mGal, respectively.  相似文献   

8.
Geoacoustic inversion results based on data obtained during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 East China Sea experiment are reported. The inversion process uses a genetic-algorithm-based matched-field-processing approach to optimize the search procedure for the unknown parameters. Inversion results include both geometric and geoacoustic variables. To gauge the quality of the inversion, two different analyses are employed. First, the inversion results based upon discrete source-receiver ranges are confirmed by continuous source localization over an interval of time. Second, separate inversions at many different ranges are carried out and the uncertainties of the parameter estimation are analyzed. The analysis shows that both methods yield consistent results, ensuring the reliability of inversion in this study.  相似文献   

9.
Matched-field methods concern estimation of source locations and/or ocean environmental parameters by exploiting full wave modeling of acoustic waveguide propagation. Typical estimation performance demonstrates two fundamental limitations. First, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), leading to a threshold performance behavior. Second, most matched-field algorithms show a strong sensitivity to environmental/system mismatch, introducing biased estimates at high SNR. In this paper, some theoretical developments on matched-field performance analysis are summarized, including Bayesian performance bounds and probabilistic ambiguity analysis, both incorporating environmental/system uncertainty/mismatch. Performance analysis is then implemented for source localization in a typical shallow water environment chosen from the Shallow Water Evaluation Cell Experiments (SWellEX). The performance predictions describe the simulations of the maximum-likelihood estimator (MLE) well, including the mean-square error (MSE) in all SNR regions as well as the bias at high SNR. The threshold SNR and bias predictions are also validated through SWellEX experimental data processing. The results suggest the current environmental, acoustic, and statistical modeling has developed to such a level that the optimum theoretical matched-field performance can be achieved in a well-controlled experiment.  相似文献   

10.
A method for estimating properties of the ocean bottom such as bathymetry and geoacoustic parameters such as sound speed, density and attenuation, using matched-field inversion is considered. The inversion can be formulated as an optimization problem by assuming a discrete model of unknown parameters and a bounded search space for each parameter. The optimization then involves finding the set of parameter values which minimizes the mismatch between the measured acoustic field and modeled replica fields. Since the number of possible models can be extremely large, the method of simulated annealing, which provides an efficient optimization that avoids becoming trapped in suboptimal solutions, has been used. The matching fields are computed using a normal mode model. In inversions for range-dependent parameters, the adiabatic approximation is employed. This allows mode values to be precomputed for a grid of parameter values and stored in look-up tables for fast reference, which greatly improves computational efficiency. Synthetic inversion examples are presented for realistic range-independent and range-dependent environments  相似文献   

11.
This paper examines the information content in matched-field geoacoustic inverse problems as a function of a variety of experiment factors, with the aim of guiding data collection and processing to achieve the best possible inversion results. The information content of the unknown geoacoustic parameters is quantified in terms of their marginal posterior probability distributions, which define the accuracy expected in inversion. Marginal distributions are estimated using a fast Gibbs sampler approach to Bayesian inversion, which provides an efficient, unbiased sampling of the multi-dimensional posterior probability density. When sampled to convergence, the marginal distributions are found to have simple, smooth shapes that facilitate straightforward comparisons. The approach is general; the specific examples considered here include factors such as the number of sensors in the receiving array, array length, source-receiver range, source frequency, number of frequencies, source bandwidth, and signal-to-noise ratio  相似文献   

12.
This paper examines the effectiveness of horizontal line arrays (HLAs) for matched-field inversion (MFI) by quantifying geoacoustic information content for a variety of experiment and array factors, including array length and number of sensors, source range and bearing, source-frequency content, and signal-to-noise ratio (SNR). Emphasis is on bottom-moored arrays, while towed arrays are also considered, and a comparison with vertical line array (VLA) performance is made. The geoacoustic information content is quantified in terms of marginal posterior probability distributions (PPDs) for model parameters estimated using a fast Gibbs sampler approach to Bayesian inversion. This produces an absolute, quantitative estimate of the geoacoustic parameter uncertainties which can be directly compared for various experiment and array factors.  相似文献   

13.
During the sediment acoustics experiment in 1999 (SAX99), several researchers measured sound speed and attenuation. Together, the measurements span the frequency range of about 125 Hz-400 kHz. The data are unique both for the frequency range spanned at a common location, and for the extensive environmental characterization that was carried out as part of SAX99. Environmental measurements were sufficient to determine or bound the values of almost all the sediment and pore water physical property input parameters of the Biot poroelastic model for sediment. However, the measurement uncertainties for some of the parameters result in significant uncertainties for Biot-model predictions. Here, measured sound-speed and attenuation results are compared to the frequency dependence predicted by Biot theory and a simpler "effective density" fluid model derived from Biot theory. Model/data comparisons are shown where the uncertainty in Biot predictions due to the measurement uncertainties for values of each input parameter are quantified. A final set of parameter values, for use in other modeling applications e.g., in modeling backscattering (Williams et al., 2002) are given, that optimize the fit of the Biot and effective density fluid models to the sound-speed dispersion and attenuation measured during SAX99. The results indicate that the variation of sound speed with frequency is fairly well modeled by Biot theory but the variation of attenuation with frequency deviates from Biot theory predictions for homogeneous sediment as frequency increases. This deviation may be due to scattering from volume heterogeneity. Another possibility for this deviation is shearing at grain contacts hypothesized by Buckingham; comparisons are also made with this model.  相似文献   

14.
A method which utilizes the lateral offset information obtained by comparing swath bathymetric data at track crossover points as a further constraint on the navigation is presented. The method, based on generalized least squares inversion theory, derives a new navigational solution that minimizes the overall misfit between the pairs of topography at crossovers while trying to remain smooth and close to the starting model. To achieve a high numerical efficiency during inversions of large matrices, we employed sparse matrix algorithms. The inversion scheme was applied to a set of Sea Beam data collected over the East Pacific Rise near 9° 30' N in early 1988 at the time when the Global Positioning System had limited coverage. The starting model was constructed by taking evenly spaced samples of positions along the tracklines. For each one of the 361 crossovers, we gridded the bathymetric data around the crossover point compared the gridded maps, and calculated the offset and uncertainty associated with this estimation. A suite of inversion solutions were obtained depending on the choice of three free parameters (that is, the a priori model variance, the correlation interval of a priori model, and the trade-off coefficient between fitting the data and remaining close to the a priori model). The best solution was chosen as one that minimizes both the Sea Beam topography and free-air gravity anomaly differences at crossovers. The improvement was significant; the initial rms mismatch between the tracks and free-air gravity anomalies at crossovers was reduced from 610m to 75m and from 2.5mGal to 1.9mGal, respectively.  相似文献   

15.
Blind marine seismic deconvolution using statistical MCMC methods   总被引:1,自引:0,他引:1  
In order to improve the resolution of seismic images, a blind deconvolution of seismic traces is necessary, since the source wavelet is not known and cannot be considered as a stationary signal. The reflectivity sequence is modeled as a Gaussian mixture, depending on three parameters (high and low reflector variances and reflector density), on the wavelet impulse response, and on the observation noise variance. These parameters are unknown and must be estimated from the recorded trace, which is the reflectivity convolved with the wavelet, plus noise. Two methods are compared in this paper for the parameter estimation. Since we are considering an incomplete data problem, we first consider maximum likelihood estimation by means of a stochastic expectation maximization (SEM) method. Alternatively, proper prior distributions can be specified for all unknown quantities. Then, a Bayesian strategy is applied, based on a Monte Carlo Markov Chain (MCMC) method. Having estimated the parameters, one can proceed to the deconvolution. A maximum posterior mode (MPM) criterion is optimized by means of an MCMC method. The deconvolution capability of these procedures is checked first on synthetic signals and then on the seismic data of the IFREMER ESSR4 campaign, where the wavelet duration blurs the reflectivity, and on the SMAVH high-resolution marine seismic data.  相似文献   

16.
在测量海底声学参数的实际海洋环境中,声源和接收位置的距离这两个参数常常无法准确测量,在这种情况下,需要采用匹配场反演方法来估计海底的声学参数。一般情况下,匹配场反演方法可以归纳为2个组成部分,即海洋声场的声学预报模型和搜索控制策略。文中采用受控制的穷举方法作为搜索控制策略,对1996年中美远黄海试验的实验数据进行了匹配场反演试验,用以测定海底参数,由此得到的海底声学参数与实验中测量的声场衰减进行对比,一致性很好。  相似文献   

17.
Accurate knowledge of array shape is essential for carrying out full wavefield (matched-field) processing. Direct approaches to array element localization (AEL) include both nonacoustic (tilt-heading sensors) and acoustic (high-frequency, transponder-based navigation) methods. The low-frequency signature emitted from a distant source also can be used in an inversion approach to determine array shape. The focus of this paper is on a comparison of the array shape results from these three different methods using data from a 120-m aperture vertical array deployed during SWellEx-3 (Shallow Water evaluation cell Experiment 3). Located 2 m above the shallowest array element was a self-recording package equipped with depth, tilt, and direction-of-tilt sensors, thereby permitting AEL to be performed non-acoustically. Direct AEL also was performed acoustically by making use of transponder pings (in the vicinity of 12 kHz) received by high-frequency hydrophones spaced every 7.5 m along the vertical array. In addition to these direct approaches, AEL was carried out using an inversion technique where matched-field processing was performed on a multitone (50-200 Hz), acoustic source at various ranges and azimuths from the array. As shown, the time-evolving array shape estimates generated by all three AEL methods provide a consistent picture of array motion throughout the 6-h period analyzed  相似文献   

18.
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.  相似文献   

19.
The ocean acoustic tomographic (OAT) approach to sound speed field estimation is generalized to include a variety of sources of information of interest such as an oceanographic model of the sound speed field, direct local sound speed measurements, and a full field acoustic propagation model as well as measurements. The inverse problem is presented as a four-dimensional field estimation problem using a variational approach commonly used in oceanographic data assimilation. The current OAT approach is shown to be a special case of the general framework. The matched-field tomography (MFT) approach is also discussed within this context. A simple implementation of this novel approach is then investigated in the absence of a suitable oceanographic model, and acoustic propagation is accounted for using a standard parabolic equation model. The inverse equations derived are validated numerically through a simple inversion example, and some issues on environmental mismatch and computations are discussed. The developments then provide a basic framework for ongoing data-model melding in acoustically focused oceanographic sampling (AFOS) network  相似文献   

20.
This communication presents a new multistep matched-field algorithm for geoacoustic inversion by subspace extraction with a threshold. In this algorithm, according to the varying sensitivities of geoacoustic parameters, parameters are separated into several subsets (or subspaces). Then, inversions are carried out in each sensitive subspace using an optimization algorithm, and for each inversion, a sub-subspace is extracted where values of objective functions are lower than a given threshold. Finally, in all the extracted sub-subspaces combined with the subspace of insensitive parameters, an inversion is performed for all parameters to find the optimal solution. After the extracting process, the search space is greatly reduced, and generally, the true parameter values will not be excluded from the sub-subspace if a reasonable threshold is designed. Thus, higher efficiency and accuracy can be obtained when compared with other algorithms. Simulation is carried out on synthetic data and results indicate that the new algorithm's performance is significantly superior to those of other algorithms.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号