首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The correlation function theory on the basis of prescribed boundary conditions provides a deeper understanding in studying the dynamical parameters of galaxy clusters. The approach approximates that the moderate dense systems discussed by a two point correlation function is helpful for describing the dynamical nature of galaxy clusters. The projected theory of two point correlation function for point mass and extended mass structures can be used an alternative tool in measuring the average peculiar motion and temperature profile of galaxy clusters.  相似文献   

2.
Our modified gravity theory (MOG) was used successfully in the past to explain a range of astronomical and cosmological observations, including galaxy rotation curves, the cosmic microwave background acoustic peaks, and the galaxy mass power spectrum. MOG was also used successfully to explain the unusual features of the Bullet Cluster  1E0657−558  without exotic dark matter. In the present work, we derive the relativistic equations of motion in the spherically symmetric field of a point source in MOG and, in particular, we derive equations for light bending and lensing. Our results also have broader applications in the case of extended distributions of matter, and they can be used to validate the Bullet Cluster results and provide a possible explanation for the merging clusters in Abell 520.  相似文献   

3.
Observational evidence shows that gravitational lensing induces an angular correlation between the distribution of galaxies and much more distant QSOs. We use weak gravitational lensing theory to calculate this angular correlation, updating previous calculations and presenting new results exploring the dependence of the correlation on the large-scale structure. We study the dependence of the predictions on a variety of cosmological models, such as cold dark matter models, mixed dark matter models and models based on quintessence. We also study the dependence on the assumptions made about the nature of the primordial fluctuation spectrum: adiabatic, isocurvature and power spectra motivated by the cosmic string scenario are investigated. Special attention is paid to the issue of galaxy biasing, which is fully incorporated. We show that different mass power spectra imply distinct predictions for the angular correlation, and therefore the angular correlation provides an extra source of information about cosmological parameters and mechanisms of structure formation. We compare our results with observational data and discuss their potential uses. In particular, it is suggested that the observational determination of the galaxy–QSO correlation may be used to give an independent measurement of the mass power spectrum.  相似文献   

4.
We study the power spectrum of galaxies in redshift space, with third-order perturbation theory to include corrections that are absent in linear theory. We assume a local bias for the galaxies: i.e., the galaxy density is sampled from some local function of the underlying mass distribution. We find that the effect of the non-linear bias in real space is to introduce two new features: first, there is a contribution to the power which is constant with wavenumber, whose nature we reveal as essentially a shot-noise term. In principle this contribution can mask the primordial power spectrum, and could limit the accuracy with which the latter might be measured on very large scales. Secondly, the effect of second- and third-order bias is to modify the effective bias (defined as the square root of the ratio of galaxy power spectrum to matter power spectrum). The effective bias is almost scale-independent over a wide range of scales. These general conclusions also hold in redshift space. In addition, we have investigated the distortion of the power spectrum by peculiar velocities, which may be used to constrain the density of the Universe. We look at the quadrupole-to-monopole ratio, and find that higher order terms can mimic linear theory bias, but the bias implied is neither the linear bias, nor the effective bias referred to above. We test the theory with biased N -body simulations, and find excellent agreement in both real and redshift space, providing the local biasing is applied on a scale whose fractional rms density fluctuations are < 0.5.  相似文献   

5.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

6.
We examine the effect of inhomogeneous re-ionization on the galaxy power spectrum and the consequences for probing dark energy. To model feedback during re-ionization, we apply an ansatz setting the galaxy overdensity proportional to the underlying ionization field. Thus, inhomogeneous re-ionization may leave an imprint in the galaxy power spectrum. We evolve this imprint to low redshift and use the Fisher-matrix formalism to assess the effect on parameter estimation. We show that a combination of low-redshift  ( z = 0.3)  and high-redshift  ( z = 3)  galaxy surveys can constrain the size of cosmological H  ii regions during re-ionization. This imprint can also cause confusion when using baryon oscillations or other features of the galaxy power spectrum to probe the dark energy. We show that when bubbles are large, and hence detectable, our ability to constrain w can be degraded by up to 50 per cent. When bubbles are small, the imprint has little or no effect on measuring dark energy parameters.  相似文献   

7.
8.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

9.
《New Astronomy Reviews》1999,43(8-10):643-646
In the framework of the study of a new sample of large angular size radio galaxies selected from the NRAO VLA Sky Survey, we have made radio observations of J2114+820, a low-power radio galaxy with an angular size of 6′. Its radio structure basically consists of a prominent core, a jet directed in northwest direction and two extended S-shaped lobes. We have also observed the optical counterpart of J2114+820, a bright elliptical galaxy with a strong unresolved central component. The optical spectrum shows broad emission lines. This fact, together with its low radio power and FR-I morphology, renders J2114+820 a non-trivial object from the point of view of the current unification schemes of radio-loud active galactic nuclei.  相似文献   

10.
Differences in clustering properties between galaxy subpopulations complicate the cosmological interpretation of the galaxy power spectrum, but can also provide insights about the physics underlying galaxy formation. To study the nature of this relative clustering, we perform a counts-in-cells analysis of galaxies in the Sloan Digital Sky Survey in which we measure the relative bias between pairs of galaxy subsamples of different luminosities and colours. We use a generalized  χ2  test to determine if the relative bias between each pair of subsamples is consistent with the simplest deterministic linear bias model, and we also use a maximum likelihood technique to further understand the nature of the relative bias between each pair. We find that the simple, deterministic model is a good fit for the luminosity-dependent bias on scales above  ∼2  h −1 Mpc  , which is good news for using magnitude-limited surveys for cosmology. However, the colour-dependent bias shows evidence for stochasticity and/or non-linearity which increases in strength towards smaller scales, in agreement with previous studies of stochastic bias. Also, confirming hints seen in earlier work, the luminosity-dependent bias for red galaxies is significantly different from that of blue galaxies: both luminous and dim red galaxies have higher bias than moderately bright red galaxies, whereas the biasing of blue galaxies is not strongly luminosity dependent. These results can be used to constrain galaxy formation models and also to quantify how the colour and luminosity selection of a galaxy survey can impact measurements of the cosmological matter power spectrum.  相似文献   

11.
Published galaxy power spectra from the two-degree field galaxy redshift survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) are not in good agreement. We revisit this issue by analysing both the 2dFGRS and SDSS Data Release 5 (DR5) catalogues using essentially identical techniques. We confirm that the 2dFGRS exhibits relatively more large-scale power than the SDSS, or, equivalently, SDSS has more small-scale power. We demonstrate that this difference is due to the r -band selected SDSS catalogue being dominated by more strongly clustered red galaxies, which have a stronger scale-dependent bias. The power spectra of galaxies of the same rest-frame colours from the two surveys match well. If not accounted for, the difference between the SDSS and 2dFGRS power spectra causes a bias in the obtained constraints on cosmological parameters which is larger than the uncertainty with which they are determined. We also found that the correction developed by Cole et al. to model the distortion in the shape of the power spectrum due to non-linear evolution and scale-dependent bias is not able to reconcile the constraints obtained from the 2dFGRS and SDSS power spectra. Intriguingly, the model is able to describe the differences between the 2dFGRS and the much more strongly clustered Luminous Red Galaxy (LRG) sample, which exhibits greater non-linearities. This shows that more work is needed to understand the relation between the galaxy power spectrum and the linear perturbation theory prediction for the power spectrum of matter fluctuations. It is therefore important to accurately model these effects to get precise estimates of cosmological parameters from these power spectra and from future galaxy surveys like Pan-STARRS, or the Dark Energy Survey, which will use selection criteria similar to the one of SDSS.  相似文献   

12.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

13.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

14.
We develop a new method to determine the linear mass power spectrum using the mass function of galaxy clusters. We obtain the rms mass fluctuation  σ( M )  using the expression for the mass function in the Press & Schechter, Sheth, Mo & Tormen and Jenkins et al. formalisms. We apply different techniques to recover the adimensional power spectrum  Δ2( k )  from  σ( M )  namely the   k eff  approximation, the singular value decomposition and the linear regularization method. The application of these techniques to the τCDM and ΛCDM GIF simulations shows a high efficiency in recovering the theoretical power spectrum over a wide range of scales. We compare our results with those derived from the power spectrum of the spatial distribution of the same sample of clusters in the simulations obtained by application of the classical Feldman, Kaiser & Peacock (FKP) method. We find that the mass function based method presented here can provide a very accurate estimate of the linear power spectrum, particularly for low values of k . This estimate is comparable to, or even better behaved than, the FKP solution.
The principal advantage of our method is that it allows the determination of the linear mass power spectrum using the joint information of objects of a wide range of masses without dealing with specific assumptions on the bias relative to the underlying mass distribution.  相似文献   

15.
ROSAT /HRI observations of the powerful radio-loud galaxy 3C 382 reveal extended X-ray emission associated with the source. On the basis of this new spatial component, a previous ROSAT /PSPC spectral analysis of the source is revised. Allowing for the presence of an additional thermal component in the PSPC spectrum, the non-thermal component is found to be compatible with the extrapolation of the well-defined 3C 382, 2–10 keV, power-law spectrum into the soft X-ray region. The thermal – extended – component would then account for the soft excess emission previously reported for this source. The origin of this thermal component is not clear. Its luminosity compares with that of rich Abell clusters; yet, the galaxy environment in 3C 382 appears of moderate optical richness. An alternative is that it is the result of a massive extended gaseous atmosphere sustained by the deep gravitational potential well of 3C 382.  相似文献   

16.
We suggest a method and build a model of radio galaxy distribution over the sphere using data from the WENSS catalogs and standard radio count models by Condon. We calculate the angular power spectrum of the contribution of extended radio galaxies into the microwave background and show that it can be a distorting factor for correct estimation of the angular spectrum from the signal determined by the Sunyaev–Zeldovich effect.  相似文献   

17.
We investigate the effect of orientation-dependent selection effects on galaxy clustering in redshift space. It is found that if galaxies are aligned by large-scale tidal fields, then these selection effects give rise to a dependence of the observed galaxy density on the local tidal field, in addition to the well-known dependences on the matter density and radial velocity gradient. This alters the galaxy power spectrum in a way that is different for Fourier modes parallel to and perpendicular to the line of sight. These tidal galaxy alignments can thus mimic redshift space distortions (RSD), and thus result in a bias in the measurement of the velocity power spectrum. If galaxy orientations are affected only by the local tidal field, then the tidal alignment effect has exactly the same scale and angular dependence as the RSDs in the linear regime, so it cannot be projected out or removed by masking small scales in the analysis. We consider several toy models of tidal alignments and orientation-dependent selection, normalize their free parameter (an amplitude) to recent observations, and find that they could bias the velocity amplitude   f ( z ) G ( z )  by 5–10 per cent in some models, although most models give much smaller contamination. We conclude that tidal alignments may be a significant systematic error in RSD measurements that aim to test general relativity via the growth of large-scale structure. We briefly discuss possible mitigation strategies.  相似文献   

18.
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N -body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box  (=2.41  h −3 Gpc3)  . We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s , and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of  Δ s / s = 0.5–0.7  per cent (corresponding to Δ w ≈ 2–3 per cent), which is competitive with the proposed WFMOS survey (  Δ s / s = 1  per cent Δ w ≈ 4 per cent). Achieving Δ w ≤ 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.  相似文献   

19.
Cosmological N -body simulations are used for a variety of applications. Indeed progress in the study of large-scale structures and galaxy formation would have been very limited without this tool. For nearly 20 yr the limitations imposed by computing power forced simulators to ignore some of the basic requirements for modelling gravitational instability. One of the limitations of most cosmological codes has been the use of a force softening length that is much smaller than the typical interparticle separation. This leads to departures from collisionless evolution that is desired in these simulations. We propose a particle-based method with an adaptive resolution where the force softening length is reduced in high-density regions while ensuring that it remains well above the local interparticle separation. The method, called the Adaptive TreePM (ATreePM), is based on the TreePM code. We present the mathematical model and an implementation of this code, and demonstrate that the results converge over a range of options for parameters introduced in generalizing the code from the TreePM code. We explicitly demonstrate collisionless evolution in collapse of an oblique plane wave. We compare the code with the fixed resolution TreePM code and also an implementation that mimics adaptive mesh refinement methods and comment on the agreement and disagreements in the results. We find that in most respects the ATreePM code performs at least as well as the fixed resolution TreePM in highly overdense regions, from clustering and number density of haloes to internal dynamics of haloes. We also show that the adaptive code is faster than the corresponding high-resolution TreePM code.  相似文献   

20.
The 2dF Galaxy Redshift Survey has now measured in excess of 160 000 galaxy redshifts. This paper presents the power spectrum of the galaxy distribution, calculated using a direct Fourier transform based technique. We argue that, within the k -space region     , the shape of this spectrum should be close to that of the linear density perturbations convolved with the window function of the survey. This window function and its convolving effect on the power spectrum estimate are analysed in detail. By convolving model spectra, we are able to fit the power-spectrum data and provide a measure of the matter content of the Universe. Our results show that models containing baryon oscillations are mildly preferred over featureless power spectra. Analysis of the data yields 68 per cent confidence limits on the total matter density times the Hubble parameter     , and the baryon fraction     , assuming scale-invariant primordial fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号