首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase.  相似文献   

2.

The study of water masses is important as they transport water properties affecting the biosphere and ocean dynamics. In this study, we revisit water masses in the Caribbean Sea using climatology and 11 months of observations at different depths from 3 moorings placed in the Guajira upwelling region, providing some new findings. The Caribbean Surface Water (CSW) seasonal variability is studied at the mixed layer depth. Salinity differences between CSW and the saltier North Atlantic Subtropical Underwater (SUW) determine static stability spatial and temporal variations, with implications for regional ocean dynamics. Besides, we assess the climatologic distribution of water masses below the salinity maximum using the optimum multiparameter analysis and the Thermodynamic Equation of Seawater 2010, defining their source water indices when entering the Caribbean Sea. The SUW, with its core at ~ 150 m depth, occupies 16% of the Caribbean Sea volume, complemented by 38% of Antarctic Intermediate Water, with its core at ~ 700 m depth and North Atlantic Deep Water, which as bottom water occupies 46% of the volume. Hydrographic observations do not differ from climatology, regardless of their large sub-annual variations decreasing with depth. Daily time series of dominant water fractions at different depths correlate at each mooring, indicating a common forcing. Besides, rotated wind stress, which is an indicator of the Guajira upwelling, correlates regularly with water mass fractions down to 700 m depth. However, during strong wind shifts, upwelling seems to affect them down to 1450 m depth.

  相似文献   

3.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

4.
Comparisons are made between the Lesser Antilles and the South Sandwich Islands, the recent volcanic island chains at the eastern margins of the Caribbean and Scotia arcs. Although situated in similar geological and structural environments there are differences in the type of volcanic activity which prevails in these two arcs and in the petrography and chemistry of the lavas emitted. There is good evidence that the South Sandwich Islands are in general appreciably younger than the islands of the Lesser Antilles. Basaltic rocks predominate in the South Sandwich Islands whereas andesite is the dominant rock-type of the Lesser Antilles. Many of the lavas of the South Sandwich Islands, including the andesites and dacites are aphyric whereas those of the Lesser Antilles are almost invariably porphyritic. The basalts of the South Sandwich Islands are of tholeiitic type and the series shows more pronounced iron enrichment than does that of the Lesser Antilles. Basalts of the South Sandwich Islands have a lower Fe2O3/FeO ratio, contain lower concentrations of K, Sr and Ba and higher Cr, Co and Ni than the basalts of the West Indies. It is thought that the South Sandwich Islands may represent a volcanic island-arc in the early stages of development and the Lesser Antilles a later stage.  相似文献   

5.
Leif N. Thomas 《Ocean Dynamics》2017,67(10):1335-1350
In the ocean, wind-generated kinetic energy (KE) manifests itself primarily in balanced currents and near-inertial waves. The dynamics of these flows is strongly constrained by the Earth’s rotation, causing the KE in balanced currents to follow an inverse cascade but also preventing wave-wave interactions from fluxing energy in the near-inertial band to lower frequencies and higher vertical wavenumbers. How wind-generated KE is transferred to small-scale turbulence and dissipated is thus a non-trivial problem. This article presents a review of recent theoretical calculations and numerical simulations that demonstrate how some surprising modifications to internal wave physics by the lateral density gradients present at ocean fronts allow for strong interactions between balanced currents and near-inertial waves that ultimately result in energy loss for both types of motion.  相似文献   

6.
We have relocated the twenty-eight largest magnitude (4.3M s 7.3) historical (1922–1963) earthquakes of the southeastern Caribbean. We also present new focal mechanisms for seven of these events. The relocations are based on reported ISSP andS arrival times that we analyzed using generalized linear inversion techniques. The new focal mechanisms were constrained by first motionP polarities as reported by the ISS and as picked by us where records were available, and by the polarities and ratios ofSH andsSH, andSV andsSV arrivals that we determined from seismograms. The results of the relocations are commensurate with the distribution of seismicity observed in the recent era: hypocenters are shallow and intermediate in depth (0–200 km), and the events occur almost exclusively in areas known to be currently seismic. The frequent seismic activity in the vicinity of the Paria Peninsula, Venezuela, is clearly a persistent feature of the regional earthquake pattern; intermediate depth earthquakes indicative of subduction beneath the Caribbean plate occur here and along the Lesser Antilles arc. The Grenadines seismic gap is confirmed as an area of low seismic moment release throughout the historical era. Trinidad and the eastern Gulf of Paria were also largely quiescent.The new focal mechanisms, despite being a sparse data set, give significant insight into both subduction processes along the Lesser Antilles arc and into the shallow deformation of the Caribbean-South America plate boundary zone. The largest earthquake to have occurred in this region, the 19 March 1953 event (M m =7.01), is a Lesser Antilles slab deformation event, and another earthquake in this region of the Lesser Antilles is probably a rarely-observed interplate thrust event. Shallow deformation in the plate boundary zone is complex and, near the Paria Penninsula, involves mixed southeastward thrusting and dextral strike-slip on east-striking faults, and secondarily, normal faulting. Bending of the subducting Atlantic-South American plate also seems to generate seisms. The rather high ratio of intraplate deformation to interplate deformation observed along the Lesser Antilles subduction zone in the more recent era seems to have been operative in the historical era as well.  相似文献   

7.
The geology, petrology, and petrogenesis of Saba Island, Lesser Antilles   总被引:1,自引:0,他引:1  
Saba is the northernmost volcano along the Lesser Antilles island-arc chain. The Lesser Antilles arc results from the west-northwest subduction of the Atlantic lithosphere beneath the Caribbean Plate. Sediment thickness along the trench decreases northward away from sediment sources on the continent of South America. We focused our attention on Saba precisely because it is the furthest away from documented geochemical effects in the southern arc volcanics of the large sediment thicknesses — normally attributed to both source or upper level contamination (i.e. assimilation).Field mapping, petrology, mineralogy, K–Ar dating, and geochemical analyses (major and trace element) indicate a complex history of magma petrogenesis including crystal fractionation, magma mixing, and, surprisingly, crustal assimilation. This is the first time assimilation has been documented in the northern section of the Lesser Antilles arc. Magma mixing shows up in the field as banded pumice and petrographically and mineralogically as complex zoning in phenocrysts (such as reverse zoning in plagioclase), disequilibrium mineral assemblages (e.g. quartz and olivine), and disequilibrium between minerals and whole-rock compositions (e.g. forsterite content of olivine). Mass-balance modeling of major and trace elements support our contention that crystal fractionation (including amphibole) played an important role in magma evolution. However, various geochemical trends can only be explained by assimilation-fractional crystallization based on the fact that the trends of various trace elements and trace-element ratios vary with increasing silica. Finally, we could find no evidence of sediment source contamination in the most mafic rocks. It may exist but is overprinted by the later assimilation effects.  相似文献   

8.
The Transoceanic 1755 Lisbon Tsunami in Martinique   总被引:1,自引:0,他引:1  
On 1 November 1755, a major earthquake of estimated M w=8.5/9.0 destroyed Lisbon (Portugal) and was felt in the whole of western Europe. It generated a huge transoceanic tsunami that ravaged the coasts of Morocco, Portugal and Spain. Local extreme run-up heights were reported in some places such as Cape St Vincent (Portugal). Great waves were reported in the Madeira Islands, the Azores and as far as the Antilles (Caribbean Islands). An accurate search for historical data allowed us to find new (unpublished) information concerning the tsunami arrival and its consequences in several islands of the Lesser Antilles Arc. In some places, especially Martinique and the Guadeloupe islands, 3?m wave heights, inundation of low lands, and destruction of buildings and boats were reported (in some specific locations probably more enclined to wave amplification). In this study, we present the results of tsunami modeling for the 1755 event on the French island of Martinique, located in the Lesser Antilles Arc. High resolution bathymetric grids were prepared, including topographic data for the first tens of meters from the coastline, in order to model inundations on several sites of Martinique Island. In order to reproduce as well as possible the wave coastal propagation and amplification, the final grid was prepared taking into account the main coastal features and harbour structures. Model results are checked against historical data in terms of wave arrival, polarity, amplitude and period and they correlate well for Martinique. This study is a contribution to the evaluation of the tele-tsunami impact in the Caribbean Islands due to a source located offshore of Iberia and shows that an 8.5 magnitude earthquake located in the northeastern Atlantic is able to generate a tsunami that could impact the Caribbean Islands. This fact must be taken into account in hazard and risk studies for this area.  相似文献   

9.
Recent radium measurements from the near-surface Caribbean Sea are presented. The surface horizontal and vertical distributions of226Ra are essentially the same as reported by Szabo et al. (1967) for the early 1960's. The226Ra activity at the surface is relatively uniform across the Caribbean, with an average of8.2±0.4dpm/100kg. The subsurface distribution to ~200 m averages7.8±0.4dpm/100kg and increases slowly below 200 m. reaching ~9.5 dpm/100 kg at 560 m. In contrast to226Ra, the surface concentration of228Ra was much more variable in both time and space. An average increase of 33% was found between 1968 and 1976 in the western Caribbean and during both years an anomalously high228Ra activity was found in the eastern Caribbean. These data support previous hypotheses that water entering the eastern Caribbean has been enriched in228Ra prior to entry and that variable mixing of the Atlantic water masses found to the northeast and southeast of the Lesser Antilles may produce temporal variations in the near-surface228Ra activity. Scatter plots of228Ra vs. salinity and sigma-t indicate that the near-surface vertical distribution of228Ra in the Caribbean Sea is predominantly influenced by advection. Thus228Ra cannot be used to study near-surface vertical mixing rates in this region.  相似文献   

10.
This paper is concerned with the islands of Montserrat Nevis, St. Kitts, St. Eustatius and Saba, which lie on the inner volcanic are at the northern of the Lesser Antilles. Andesites greatly predominate over basalts and dacites in this part of the arc. Generally the lavas from the northern Lesser Antilles contain low abundances of Ni, Cr and residual trace elements but lavas from Saba are enriched in these elements compared with the other islands in the group. The most important petrogenetic process in this part of the Lesser Antilles is probably partial melting of subducted oceanie tholeiite and this process accounts satisfactorily for the chemistry (especially the low Ni, Cr) and large volumes of the erupted andesites. Some andesites have, however, been produced by fractional crystallisation of basaltic magma and magma mixing probably accounts for some of the peculiar chemical and petrographic properties of the Saba andesites. The rocks from the Northern Lesser Antilles are different from those in the central part of the arc (more acid rocks, higher residual trace elements) and the southern islands have much higher proportions of basalt, some of it undersaturated and alkaline. It is thought that partial melting of mantle peridotite may be the predominant petrogenetic process at the southern end of the Lesser Antilles whereas partial melting of subducted oceanic crust is more important in the north.  相似文献   

11.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

12.
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.

Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model.  相似文献   


13.
Wind-induced subduction at the South Atlantic subtropical front   总被引:1,自引:1,他引:0  
The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with \(\mathcal {O}(1)\) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.  相似文献   

14.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

15.
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations (GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction for the Lesser Antilles.  相似文献   

16.
Native copper occurs in hematitic and zeolitic pillow basalts (spilites) of Cretaceous age or older from La Désirade, Lesser Antilles. No similar occurrence has been described from the Greater or Lesser Antilles. The copper bearing basalts are anomalously old in a region of active subduction and are remnants of oceanic crust or island arc tholeiites  相似文献   

17.
The Soufriere of St. Vincent has been monitored for more than 25 years as part of a regional programme in the Lesser Antilles. In that time the volcano has erupted twice but our studies have shown no discernible change in regional seismicity before either event. However, very small seismic events were observed in the crater during the 1971–1972 eruption and were detected before the start of the 1979 explosive eruption; we believe that they were generated by thermally induced hydraulic fracturing within the lava mass inside the crater lake. We conclude that seismographic monitoring of Lesser Antillean volcanoes can give ambiguous results but that at least one instrument must be placed within 1 km of the vent if the earliest signs of activity are to be detected.  相似文献   

18.
Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ~2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.  相似文献   

19.
This study examines the circulation and associated monthly-to-seasonal variability in the Caribbean Sea using a regional ocean circulation model. The model domain covers the region between 99.0 and 54.0°W and between 8.0 and 30.3°N, with a horizontal resolution of 1/6°. The ocean circulation model is driven by 6-hourly atmospheric reanalysis data from the National Center for Environmental Prediction and boundary forcing extracted from 5-day global ocean reanalysis data produced by Smith et al. (Mercator Newsletter 36:39–49, 2010), and integrated for 7 years. A comparison of model results with observations demonstrates that the regional ocean circulation model has skill in simulating circulation and associated variability in the study region. Analysis of the model results, as well as a companion model run that uses steady annual mean forcing, illustrates the role of Caribbean eddies for driving monthly-to-seasonal circulation variability in the model. It is found that vertically integrated transport between Nicaragua and Jamaica is influenced by the interaction between the density perturbations associated with Caribbean eddies and the Nicaraguan Ridge. The impact of Caribbean eddies squeezing through the Yucatan Channel is also discussed.  相似文献   

20.
Near-continuous observations of an internal wave field were made over a period of 13 months at a location in Inchmarnock Water at the northern end of the Clyde Sea. This paper sets out to determine the seasonal form of the energy density of the internal wave field at this location based on the hypothesis that it varies smoothly throughout the year, being greater in summer than in winter. The mooring was maintained between June 1999 and July 2000 in 150-m water with seven deployments. Estimates of kinetic and potential energy density were derived from Acoustic Doppler Current Profiler (ADCP) and vertical temperature profiles respectively. Both were shown to vary on time scales less than 1 month with median values of mean kinetic energy (KE) density0.5 J m–3 and for mean potential energy (PE) density0.01 J m–3. The energy of the internal wave field was found to be continuous and without a clear seasonal form. Further, it was also always non-zero with intermittent peaks of much higher energy. In the late autumn the system experienced complete vertical overturning driven by local convective processes destroying the thermocline and causing a reduction in the overall KE density.Responsible Editor: Jens KappeubergOrginally presented as a poster at PECS 2002, Hamburg Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号