首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bounds for the energy change rate of a Maxwell field in the outer space of a rotating black hole, calculated by de Vries (1994) and de Vries (1995), enable us to deduce limits for the rotation and the mass of black holes. For this purpose we assume that a certain part of the anisotropies of the cosmic background radiation is due to absorption or superradiance of black holes (Teukolsky, 1973, Starobinskii and Churilov, 1973). The knowledge of these anisotropies yields bounds for rotation and mass of the black holes in the observable universe.  相似文献   

2.
Astrophysical applications of white and grey holes are considered. Four types of anticollapsars in extended manifolds of general relativity are distinguished: canonical white and grey holes, light- and dark-grey holes. White and grey holes can be revealed in the form of bursts of gravitational and electromagnetic radiation, neutrino, and cosmic rays. Quasars, active galactic nuclei, jets, and cosmic voids can be associated with relicts of white and light-grey holes, and black holes do with relicts of canonical grey and dark-grey holes.  相似文献   

3.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

4.
We study the relation between the existence of the logarithmic prefactor and spacetime dimensionality in black hole entropy relation by a detailed study of a TeV-scale black hole entropy. In a model universe with large extra dimensions and within the Generalized Uncertainty Principle (GUP) framework, we show that probability of black hole production in the Large Hadronic Collider (LHC) decreases for sufficiently large values of the GUP parameter. In this regard, even observation of micro-black holes may be suppressed at TeV energy scale. We determine also the GUP parameter in an extra dimensional scenario by comparing black hole entropy calculated within the GUP and loop quantum gravity frameworks.  相似文献   

5.
We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone (GLUE), and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. We find the published sensitivity for the GLUE experiment to be too high (too optimistic) by an order of magnitude, and consequently the GLUE limit to be too low by an order of magnitude. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the square kilometre array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK’, neutrino flux.Outstanding theoretical uncertainties at both high-frequency and low-frequency limits currently prevent a reliable estimate of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray (CR) astronomy. Here, we place limits on the effects of large-scale surface roughness on UHE CR detection, and find that when near-surface ‘formation-zone’ effects are ignored, the proposed SKA low-frequency aperture array could detect CR events above 56 EeV at a rate between 15 and 40 times that of the current Pierre Auger Observatory. Should further work indicate that formation-zone effects have little impact on UHE CR sensitivity, observations of the Moon with the SKA would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.  相似文献   

6.
Several neutrino observatories have searched for coincident neutrino signals associated with gravitational waves induced by the merging of two black holes. No statistically significant neutrino signal in excess of the background level was observed. These experiments use different neutrino detection technologies and are sensitive to various neutrino types. A combined analysis was performed on the KamLAND, Super-Kamiokande and Borexino experimental data with a frequentist statistical approach to achieve a global picture of the associated neutrino fluence. Both monochromatic and Fermi-Dirac neutrino spectra were assumed in the calculation. The final results are consistent with null neutrino signals associated with the process of a binary black hole merger. The derived 90% confidence level upper limits on the fluence and luminosity of various neutrino types are presented for neutrino energy less than110 MeV.  相似文献   

7.
High energy neutrinos play a very important role for the understanding of the origin and propagation of ultra high energy cosmic rays (UHECR). They can be produced as a consequence of the hadronic interactions suffered by the cosmic rays in the acceleration regions, as by products of the propagation of the UHECR in the radiation background and as a main product of the decay of super heavy relic particles. A new era of very large exposure space observatories, of which the JEM-EUSO mission is a prime example, is on the horizon which opens the possibility of neutrino detection in the highest energy region of the spectrum. In the present work we use a combination of the PYTHIA interaction code with the CONEX shower simulation package in order to produce fast one-dimensional simulations of neutrino initiated showers in air. We make a detail study of the structure of the corresponding longitudinal profiles, but focus our physical analysis mainly on the development of showers at mid and high altitudes, where they can be an interesting target for space fluorescence observatories.  相似文献   

8.
Results will be shown from the Astroneu array developed and operated in the outskirts of Patras, Greece. An array of 9 scintillator detectors and 3 antennas were deployed to study Extensive Air Showers (EAS) as a tool for calibrating an underwater neutrino telescope, possible other applications in muon tomography, education purposes, and last but not least, for the detection of air showers via their electromagnetic signature. In this work we concentrate to the electromagnetic detection of air showers presenting the operation of the RF system, as well as the analysis of the radio signals captured in coincidence with the scintillator detectors. We demonstrate the adequacy of the method to detect cosmic events even in the presence of high urban electromagnetic background, using noise filters, timing and signal polarization. The results are compared with well understood event reconstruction using the scintillator detectors and are indicating that cosmic showers were detected, proving that such small scale hybrid arrays can operate in strong background noise environments.  相似文献   

9.
Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.  相似文献   

10.
Gamma ray burst (GRB) fireballs provide one of very few astrophysical environments where one can contemplate the acceleration of cosmic rays to energies that exceed 1020 eV. The assumption that GRBs are the sources of the observed cosmic rays generates a calculable flux of neutrinos produced when the protons interact with fireball photons. With data taken during construction IceCube has already reached a sensitivity to observe neutrinos produced in temporal coincidence with individual GRBs provided that they are the sources of the observed extra-galactic cosmic rays. We here point out that the GRB origin of cosmic rays is also challenged by the IceCube upper limit on a possible diffuse flux of cosmic neutrinos which should not be exceeded by the flux produced by all GRB over Hubble time. Our alternative approach has the advantage of directly relating the diffuse flux produced by all GRBs to measurements of the cosmic ray flux. It also generates both the neutrino flux produced by the sources and the associated cosmogenic neutrino flux in a synergetic way.  相似文献   

11.
We discuss the possible observational manifestation of the formation of massive black holes in galactic nuclei in the form of an intense high-energy neutrino flux. A short-lived (≤10 yr) hidden neutrino source results from the natural dynamicalal evolution of a central star cluster in the galactic nucleus before its gravitational collapse. The central star cluster at the final evolutionary stage consists of degenerate compact stars (neutron stars and stellar-mass black holes) and is embedded in a massive gaseous envelope produced by destructive collisions of normal stars. Multiple fireballs from frequent collisions of neutron stars give rise to a tenuous quasi-stationary cavity in the central part of the massive envelope. The cavity is filled with shock waves on which an effective cosmic-ray acceleration takes place. Allthe accelerated particles, except the secondary high-energy neutrinos, are absorbed in the dense envelope. The neutrino signal that carries information on the dynamicals of the collapsing galactic nucleus can be recorded by a neutrino detector with an effective area S∼1 km2.  相似文献   

12.
We summarize the physical input and assumptions commonly adopted in modern standard solar models that also produce good agreement with solar oscillation frequencies. We discuss two motivations for considering non-standard models: the solar neutrino problem and surface lithium abundance problem. We begin to explore the potential for mixed core models to solve the neutrino problem, and compare the structure, neutrino flux, and oscillation frequency predictions for several models in which the inner 25% of the radius is homogenized, taking into account the effects of non-local equilibrium abundances of 3He. The results for the neutrino flux and helioseismic predictions are far from satisfactory, but such models have the potential to reduce the predicted 7Be/8B neutrino flux ratio, and further studies are warranted. Finally, we discuss how much the neutrino problem can be alleviated in the framework of the standard solar model by using reaction rates, abundances and neutrino capture cross-sections at the limits of their uncertainties, while still satisfying the constraints of helioseismology.  相似文献   

13.
Data taken with ten Cosmic Ray Tracking (CRT) detectors and the HEGRA air-shower array on La Palma, Canary Islands, have been analysed to investigate changes of the cosmic ay mass composition at the ‘knee’ of the cosmic-ray flux spectrum near 1015 eV energy. The analysis is based on the angular distributions of particles in air showers. HEGRA data provided the shower size, direction, and core position and CRT data the particle track information. It is shown that the angular distribution of muons in air showers is sensitive to the composition over a wide range of shower sizes and, thus, primary cosmic-ray energies with little systematic uncertainties. Results can be easily expressed in terms of ln A of primary cosmic rays. In the lower part of the energy range covered, we have considerable overlap with direct composition measurements by the JACEE collaboration and find compatible results in the observed rise of ln A. Above about 1015 eV energy we find no or at most a slow further rise of ln A. Simple cosmic-ray composition models are presented which are fully consistent with our results as well as the JACEE flux and composition measurements and the flux measurements of the Tibet ASγ collaboration. Minimal three-parameter composition models defined by the same power-law slope of all elements below the knee and a common change in slope at a fixed rigidity are inconsistent with these data.  相似文献   

14.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space – unless the baryonic loading is much larger than previously anticipated.  相似文献   

15.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

16.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   

17.
Considerations of the collision losses for protons traversing the 2.7-K blackbody microwave radiation field have led to the conclusion that the highest energy cosmic rays, those observed at ≥1020 eV, must come from sources within the present epoch. In light of this constraint, it is here suggested that these particles may be accelerated near the event horizons of spinning supermassive black holes associated with presently inactive quasar remnants. The required emf is generated by the black hole induced rotation of externally supplied magnetic field lines threading the horizon. Producing the observed flux of the highest energy cosmic rays would constitute a negligible drain on the black hole dynamo. Observations with upcoming air shower arrays and space missions may lead to the identification of candidate dormant galaxies that harbour such black holes. Although the highest energy events observed so far are accounted for within the context of this scenario, a spectral upper bound at ∼1021 eV is expected since the acceleration to higher energies appears to be precluded, on general grounds.  相似文献   

18.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

19.
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons.In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions.The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号