首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
氮及氮磷比对附着藻类及浮游藻类的影响   总被引:5,自引:0,他引:5  
宋玉芝  秦伯强  高光 《湖泊科学》2007,19(2):125-130
2005年5月至11月,在河北省YH水库选取5个具有代表性的样点,进行了微囊藻毒素-LR的调查,同时,测定了相应各样点的TN,TP,NH4-N,NO3-N和PO4-P.结果显示,水库中微囊藻毒素-LR(MC-LR)随季节发生变化,其中,7-10月期间相对较高,且大部分超过了生活饮用水地表水标准限值(1 μg/L);MC-LR与水体中的N、P之间的相互关系表明,5-7月期间,水库MC-LR与TP呈正相关,与NH4-N和TN/TP呈负相关;8-9月期间,水库中TP逐渐降低,但其它降低速率低于TN,造成TN/TP明显降低,MC-LR与TP和TN/TP呈正相关,与NH4-N呈负相关;10-11月期间,大量藻细胞死亡,释放到水体中MC-LR也逐渐下降,这时,大量外源营养盐也进入水库,造成微囊藻毒素-LR的变化与TN、NH4-N、NO3-N呈显著或极显著负相关.这说明在不同季节下,微囊藻毒素-LR与营养盐的关系不同,必须视实际情况而定.  相似文献   

2.
铜绿微囊藻在竞争生长条件下对氧化还原电位降低的响应   总被引:10,自引:1,他引:9  
张民  孔繁翔  史小丽  邢鹏  谭啸 《湖泊科学》2007,19(2):118-124
在室内研究了有、无伊乐藻存在条件下,不同水平的氮及氮磷比(N/P)对实验体系中附着藻类和浮游藻类生长的影响,结果表明:1)在有沉水植物的体系中,当氮浓度较高时(5 mg/L),浮游藻类对N/P的变化比附着藻类更为敏感;而当氮浓度较低时(2 mg/L),浮游藻类与附着藻类对N/P的响应则没有显著的差异;2)在有沉水植物的体系中,当N/P为15时,随水体中氮浓度的升高,附着藻类的生物量显著增加,但浮游藻类的变化不显著.当N/P为25时,随水体中氮浓度的升高,浮游藻类及附着藻类的生物量均显著升高;3)附着藻类的生物量在无沉水植物(伊乐藻)存在的情况下要比有沉水植物(伊乐藻)存在时高得多,且随氮浓度升高,其生物量的增加量也远高于后者.而对浮游藻类而言,情况则完全相反.  相似文献   

3.
重建沉水植物群落是修复浅水富营养化湖泊的关键.河蚌可改善水下光照条件、促进沉水植物生长,因此放养河蚌常被用于沉水植物群落恢复的并行手段.河蚌是鳑鲏产卵的重要基质,因此河蚌可能促进鳑鲏种群发展,而鳑鲏对水生态系统的影响还尚不清楚.本研究以密刺苦草、大鳍鱊和背角无齿蚌为研究对象,通过中宇宙试验研究河蚌和鳑鲏对附着藻的影响,以及鳑鲏对水质和沉水植物生长的影响及机理.结果发现:鳑鲏显著增加了水体总磷、总溶解性磷、总悬浮物和叶绿素a浓度,而对总氮和总溶解性氮浓度的影响不显著.河蚌对苦草的相对生长率、总株数、根冠比及苦草最大叶长均无显著影响,而显著增加了苦草的单株平均生物量,这可能与河蚌组较高的附着藻生物量有关.鳑鲏未显著影响河蚌与苦草间的关系,但鳑鲏的出现显著增加了附着藻类生物量;此外,鳑鲏还降低了苦草的根冠比,而增加了苦草的最大叶长,这可能与鳑鲏引起的营养盐和叶绿素a浓度升高,以及植物表面附着藻生物量显著升高有关.鳑鲏属于小型杂食性鱼类,在长江中下游地区分布广泛,与沉水植物关系密切,且易在修复后的湖泊中形成优势鱼类,因此在湖泊修复和管理中应加强此类小型杂食性鱼类的监测与管理.  相似文献   

4.
Light within the littoral zone affects the productivity and interaction between periphyton and its macrophyte substrate. The effect of periphyton on macrophyte photosynthesis, seasonal variation and vertical distribution of periphyton on artificial substrates (plastic strips), and the effect of periphyton on the light environment was studied in Lake Balaton. Data showed that an average of 4.1 ± 0.4 mg (dry weight) cm?2 of periphyton had accumulated on the plastic strips after 8.8 ± 0.4 days. This biomass corresponded to 294 ± 30 μg m?2 chl-a of epiphytic algae and blocked 92.3 ± 0.8 % of the depth specific radiation. Seasonal variation and specific vertical distribution of periphyton were observed. The most active time of periphyton accumulation corresponded to spring up until mid-June. Later in the year, the amount of periphyton significantly decreased. The optimal conditions for periphyton accumulation were at 30–40 cm depth. Most of the light reaching the adaxial leaf surface was attenuated by periphyton, decreasing the production of Potamogeton perfoliatus by 60–80 %. This increased the importance of backscattered light that corresponded to 10–15 % of the macrophyte production. A smaller part of the periphyton consisted of precipitated inorganic material, while epiphytic algae, making up the majority of the periphyton, were connected to both benthic (dominantly benthic penales) and pelagic (very close seasonal dynamics of pelagic and epiphytic biomass) algae. Periphyton affects macrophyte production especially in spring and in the upper water layers even in a mesotrophic water body. This increases the importance of the light absorbed through the abaxial side of the leaf and confirm the role of periphyton in transition from clear to turbid water states.  相似文献   

5.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

6.
The study of seasonal dynamics of net phytoplankton was carried out above and below the hydroelectric plant (HP) on the Pas ka River. Correlations were found between the abundance of diatoms and conductivity, O2, PO4; the abundance of cyanobacteria and water temperature and conductivity, and the abundance of chlorophytes and O2 and Ntot. Multiple correlations revealed the most significant factor for diatom development is PO4, for cyanobacteria is water temperature, and for chlorophytes is Ntot. A lower abundance and biomass of phytoplankton, and less species diversity and nutrient concentrations were registered below the HP than above it. The seasonal dynamics of phytoplankton abundance provided similar results. The maximum biomass of the assemblage was found earlier below the HP, in April, than above it, in May. However, no differences were recorded in the dominant species within phytoplankton abundance. The phytoplankton biomass was dominated by the Melosira varians and Spirogyra sp., which are typical taxa of plant periphyton and possibly emanate from the concrete elements of the dam. This HP changed the local hydrological and environmental conditions, affecting available nutrients, and thereby phytoplankton development in the vegetative season.  相似文献   

7.
Chlorophyll a-concentrations, AFWD (ash-free-dry-weight) and photosynthesis rates were estimated for periphyton assemblages in Amazonian black-and white-water habitats over 14 months. Cellulose-acetate strips were incubated in situ and showed few major differences in periphyton quality as compared to natural substrata. The only exceptions were submersed Igapó forest leaves, which exhibited higher proportions of green algae and cyanobacteria though not producing differences in total periphyton biomass. Enclosure experiments showed a considerable nutrient release by inundated non-senescent Igapó forest leaves. Periphyton biomass and productivity were found to be highest in black-and white water mixing zones, where biomass peaked at 41.6 mg Chla/m2 and 19.8 g/m2 AFDW. Production was estimated to be 380 gC/m2·a. Maximum biomass of periphyton in floating meadows was 46 mg Chla/m2 and 10.6 g/m2 AFDW, with an annual production of 170 gC/m2·a. Solimões main channel periphyton values were low: maximum Chla was 7.1 mg/m2, AFDW 0.8 g/m2 and annual production was estimated to be 30 gC/m2. Blackwater periphyton values were lower compared to whitewater and mixed water values but an enlarged trophogenic zone has to be taken into account. Highest Chla content reached 30.9 mg/m2, AFDW 1.43 g/m2. Estimated annual production was 110 gC/m2. Observed mean periphyton productivity of Amazonian blackwater habitats approximately corresponded to mesotrophic attached algae productivity in temperate zones, whereas productivity of whitewater periphyton approached those of temperate eutrophic lakes. The role of periphyton in the Amazon food web is discussed.  相似文献   

8.
Most existing studies on the algal communities of acid lakes are based on environments that have been caused by anthropogenic disturbances. Such lakes have a different origin compared to the natural acidic lakes and could be expected to differ also in the mechanisms controlling phytoplankton and trophic status. Planktonic community in Lake Caviahue is somewhat diverse in spite of the low pH of the water. Algae have a distinctive vertical distribution: the values of phytoplankton biomass remain constant throughout the water column and at times were highest in the upper end of the hypolimnion, forming a maximum or a layer of chlorophyll a at depth. The goal of this work was to investigate the factors influencing the seasonal and vertical distribution of phytoplankton. The lake was sampled between the years 2004 and 2006. Physical, chemical and biological parameters at different depths throughout the water column were determined. The interrelationships between environmental variables at different sampling dates were analyzed using an integration of multivariate matrices, multiple factor analysis, to analyze any joint partnerships in the samples. We found that phytoplankton biomass is dominated by Keratococcus rhaphidioides. With regard to zooplankton, we found a single species of rotifers (Philodina sp.). The two arms of the lake and the depths have different behaviours showing differences in the arms' conductivity, dissolved oxygen and pH. The more superficial layers were characterized by high values of phytoplankton and zooplankton biomass, organic and inorganic carbon, dissolved oxygen and pH. The deeper layers showed high values of chlorophyll a, ammonium and phosphorus (dissolved and particulate). From the multivariate analysis the relationships of the each algal species with pH, as a possible indicator of the degree of “acidophilia”, could be extracted.  相似文献   

9.
The structure of periphyton or “Aufwuchs” communities is sensitive to environmental conditions. It was proposed that periphyton biomass might similarly reflect differences in measured chemical variables between 5 sampling stations in the Saidenbach reservoir. Longitudinal gradients of periphyton biomass could be shown.  相似文献   

10.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

11.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

12.
During the warm seasons of 1998-2004, the naturally-acidic (pH∼2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium-nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

13.
四种浮游植物生物量计算方法的比较分析   总被引:4,自引:2,他引:2  
陈纯  李思嘉  胡韧  韩博平 《湖泊科学》2013,25(6):927-935
浮游植物是水生生态系统中重要的初级生产者,其生物量是反映其现存量的关键指标.本文利用具有3个处理组的围隔实验中的浮游植物数据,对文献中常见的计算浮游植物种群生物量和群落生物量的4种方法:标准法、细分法、粗分法和资料法进行比较,并分析采用这4种不同方法得到的浮游植物生物量与叶绿素a浓度的相关性.结果表明:粗分法是计算浮游植物生物量的高效方法,能够保证准确度和节省时间;提高浮游植物生物量计算准确度不是影响浮游植物生物量与叶绿素a浓度相关性显著程度的关键.通过比较剔除稀有种(生物量不超过群落生物量5%的种类)前后浮游植物生物量的差异,发现忽略稀有种会导致种类均匀度较高的浮游植物群落生物量严重偏低,建议浮游植物生物量的计算不能一概忽略稀有种.  相似文献   

14.
热带富营养化湖泊中浮游植物的脂肪酸组成与分布   总被引:2,自引:0,他引:2  
星湖位于广东省.是一个热带地区的湖泊.本文测定和分析了该湖的两个子湖仙女湖和中心湖浮游植物群落的脂肪酸组成,探讨了浮游植物群落特征与脂肪酸组成之间的关系.两个子湖的富营养化程度较高,其中中心湖更严重.仙女湖的浮游植物群落以蓝藻为主导,而在中心湖则蓝藻或金藻占优势.浮游植物样品中检测到的脂肪酸碳链长为16碳到22碳.其中饱和脂肪酸和单不饱和脂肪酸种类较少,均有3种;而高不饱和脂肪酸的种类相对较多.两个子湖的脂肪酸均以饱和脂肪酸为主,高不饱和脂肪酸浓度相对较低.对于单一的脂肪酸种类来说,C16:0浓度最高,其浓度与蓝藻数量有很高的相关性(R^2=0.955,P=0.001),表明样品中的C16:0主要来源于蓝藻.而富含EPA(二十碳五烯酸)的硅藻和隐藻生物量高时其浮游植物的EPA浓度也较高;在中心湖中高浓度的DHA(二十二碳六烯酸)主要来源于金藻总之.两个子湖泊的脂肪酸组成与浮游植物群落结构特征基本一致.  相似文献   

15.
During the warm seasons of 1998–2004, the naturally-acidic (pH2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium–nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

16.
高山湖泊对于全球气候变化及人类影响是一个极为敏感的参照系统.九寨沟国家级自然保护区长海作为一个独特的高山湖泊,研究其浮游植物群落结构及其与环境的关系,评估其水质现状及影响因素,有着重要的意义.本文于2014年7月对长海浮游植物群落结构进行了研究.全湖共布设12个采样点,并在中心采样点进行了垂直分层采样.本次调查共发现浮游植物6门38属63种,平均丰度为6.98×10~5cells/L,平均生物量为0.31 mg/L.浮游植物的水平分布差异不大;在垂直分布上,浮游植物的丰度从表层0.5 m至水下50 m呈现先增加后减少的趋势,在20 m水深处达到最大.长海浮游植物的优势种是长海小环藻(Cyclotella changhai)和飞燕角甲藻(Ceratium hirundinella),长海小环藻数量较多,飞燕角甲藻生物量较大.长海浮游植物多样性指数较低,综合各类水质评价方法,可以得出九寨沟长海处于贫-中营养状态.  相似文献   

17.
富营养化是现今各国面临的主要水环境问题,其中蓝藻水华暴发是全球富营养化水体最常见的现象之一.蓝藻水华将产生大量的蓝藻碎屑,其对水质及生物的影响还尚不清楚.本研究通过向中宇宙系统添加微囊藻碎屑,分析其对水体不同形态营养盐及水生生物生物量的影响.结果表明:微囊藻碎屑加入后,水体不同形态的营养盐浓度均在短期内迅速增加,其中水体总氮和总磷平均浓度最高分别达到3.86和0.36 mg/L;浮游植物生物量(用叶绿素a表示)在前9天随营养盐浓度的升高而增加,随后逐渐下降至实验初始水平.此外,附着藻类生物量在微囊藻碎屑加入后呈逐渐下降趋势,这可能与浮游植物快速增殖引起的水体透明度下降有关.微囊藻碎屑加入后,水丝蚓生物量随微囊藻碎屑的分解持续增长,在第20天达到生物量最大值.本研究通过模拟太湖梅梁湾生态系统,探讨微囊藻碎屑对水质及水生生物生物量的影响,结果有助于进一步了解蓝藻水华对水生态系统影响的途径及机理,为富营养化湖泊管理提供理论依据.  相似文献   

18.
Annual phytoplankton productivity in Lake Constance is about 300 g C m−2, a value typical for mesoeutrophic lakes. Seasonal variations in phytoplankton biomass and productivity are exceptionally great because of a sequence of factors controlling the production process. During winter productivity is controlled by low energy inputs and high respiratory losses due to deep water column mixing. Biomass is low and water transparancy high. The spring phytoplankton growth is triggered by the thermal stabilization of the water column. The summer phytoplankton biomass maximum mainly depends on phosphorus availability. However, biomass yields comprise only 15–20% of values to be expected from the Redfield ratio because large proportions of POM are detritus and non-algal biota. Moreover, sedimentation during the second half of the year removes biomass from the euphotic zone. Water transparency and thus vertical distribution of algal photosynthesis is highly dependent on phytoplankton biomass. Self-shading causes considerably smaller seasonal variations in areal biomass and photosynthetic rates than in volume-based values. By light-shade adaptation effects of seasonal fluctuations in mean daily surface radiance fluxes on algal photosynthesis can to a significant extent be compensated for. At any given level of biomass daylength is the major determinant of daily production rates. Dedicated to Professor Elster on his 80th birthday.  相似文献   

19.
The seasonal and interannual variability in the phytoplankton community in Liverpool Bay between 2003 and 2009 has been examined using results from high frequency, in situ measurements combined with discrete samples collected at one location in the bay. The spring phytoplankton bloom (up to 29.4 mg chlorophyll m−3) is an annual feature at the study site and its timing may vary by up to 50 days between years. The variability in the underwater light climate and turbulent mixing are identified as key factors controlling the timing of phytoplankton blooms. Modelled average annual gross and net production are estimated to be 223 and 56 g C m−2 year−1, respectively. Light microscope counts showed that the phytoplankton community is dominated by diatoms, with dinoflagellates appearing annually for short periods of time between July and October. The zooplankton community at the study site is dominated by copepods and use of a fine mesh (80 μm) resulted in higher abundances of copepods determined (up to 2.5 × 106 ind. m−2) than has previously reported for this location. There is a strong seasonal cycle in copepod biomass and copepods greater than 270 μm contribute less than 10% of the total biomass. Seasonal trends in copepod biomass lag those in the phytoplankton community with a delay of 3 to 4 months between the maximum phytoplankton biomass and the maximum copepod biomass. Grazing by copepods exceeds net primary production at the site and indicates that an additional advective supply of carbon is required to support the copepod community.  相似文献   

20.
We performed a field experiment in a tropical humic coastal lagoon to evaluate periphyton biomass accrual and metabolism on three different substrates (1) plastic ribbons, (2) green and (3) senescent leaves of the emergent macrophyte Typha domingensis) over 30 days. The contribution of autotrophic biomass decreased as total biomass increased over the time. Mean periphytic ash free dry weight ranged from 0.8 to 5.6 mg cm−2, but periphyton chlorophyll a concentrations presented shorter amplitudes, which oscillated from 0.12 to 0.44 μg cm−2 throughout the experiment. Periphyton metabolism was overall heterotrophic on all substrates, especially on senescent leaves. Our data show that substrate type influenced both biomass accrual and periphyton net productivity and respiration rates throughout periphyton development and highlighted the dominance of heterotrophic metabolism. The periphyton respiration may be subsidized by both water- and substrate-derived allochthonous energy pathways, shedding light on the role of periphytic assemblages to the carbon cycling, as a source of CO2 to the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号