首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical distributions of chlorophyll in deep, warm monomictic lakes   总被引:1,自引:0,他引:1  
The factors affecting vertical distributions of chlorophyll fluorescence were examined in four temperate, warm monomictic lakes. Each of the lakes (maximum depth >80 m) was sampled over 2 years at intervals from monthly to seasonal. Profiles were taken of chlorophyll fluorescence (as a proxy for algal biomass), temperature and irradiance, as well as integrated samples from the surface mixed layer for chlorophyll a (chl a) and nutrient concentrations in each lake. Depth profiles of chlorophyll fluorescence were also made along transects of the longest axis of each lake. Chlorophyll fluorescence maxima occurred at depths closely correlated with euphotic depth (r 2 = 0.67, P < 0.01), which varied with nutrient status of the lakes. While seasonal thermal density stratification is a prerequisite for the existence of a deep chlorophyll maximum (DCM), our study provides evidence that the depth of light penetration largely dictates the DCM depth during stratification. Reduction in water clarity through eutrophication can cause a shift in phytoplankton distributions from a DCM in spring or summer to a surface chlorophyll maximum within the surface mixed layer when the depth of the euphotic zone (z eu) is consistently shallower than the depth of the surface mixed layer (z SML). Trophic status has a key role in determining vertical distributions of chlorophyll in the four lakes, but does not appear to disrupt the annual cycle of maximum chlorophyll in winter.  相似文献   

2.
3.
During the warm seasons of 1998-2004, the naturally-acidic (pH∼2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium-nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

4.
Bacteria and phytoplankton are integral in the mobilization and transfer of organic matter to higher trophic levels. Hence, we examined their role in zooplankton diets and assessed trends in their nitrogen isotopic variability. We performed feeding experiments with natural particulate organic matter (POM) and four zooplankton groups (Daphnia, Holopedium, large calanoids and small calanoids) to (1) examine whether there are differences in consumption (presented as clearance and ingestion rates) of phytoplankton and bacteria, and (2) determine whether differences in zooplankton clearance and ingestion rates are correlated with their δ15N isotopic signatures. In general, phytoplankton and bacteria clearance rates and biomass ingested per animal varied significantly among different zooplankton groups within lakes and between lakes for a given zooplankton group. Within a given lake, Daphnia and Holopedium had the highest phytoplankton and bacteria clearance and ingestion rates, followed by large calanoids, and then small calanoids. For a given zooplankton group, bacteria and phytoplankton clearance rates varied among lakes. In contrast, phytoplankton ingestion rates were consistently highest in Dickie Lake for all taxa, whereas bacteria ingestion rates were more variable among lakes for the different zooplankton taxa. The percentage contribution of different phytoplankton taxa to the biomass of phytoplankton ingested also varied significantly among lakes for a given taxa, but there were few differences within a given lake among zooplankton. Zooplankton δ15NDOMC values were correlated with their size adjusted phytoplankton and bacteria clearance and ingestion rates. The correlations were stronger with (1) phytoplankton compared to bacteria, and (2) clearance rates compared to ingestion rates of biomass. Together our results suggest that zooplankton taxa with low phytoplankton and bacteria clearance and ingestion rates and higher δ15NDOMC are likely exploiting food sources from higher trophic levels.  相似文献   

5.
Water resources of the interior plains region of North America may be adversely affected by climate warming. The climate records of the Battleford region (west central Saskatchewan) indicate that mean annual temperatures have risen by 0.71 °C and mean annual minimum temperatures have risen by 1.03 °C from 1894 to 2007. Snowfall has also increased but total precipitation has not. Concomitant with periodic declines in precipitation, lake elevation has declined and salinity has increased in Jackfish and Murray lakes from 1938 to 2004. This long term increase in salinity is predicted to have caused an approximate 30% loss in diversity of macrobenthos. Phosphorus concentrations have also increased significantly, and Jackfish and Murray lakes would be classified as eutrophic by freshwater trophic indices. However, despite large increases in nutrients in both lakes, algal biomass has not increased and water transparency has not decreased. Although the total amount of planktonic biomass in Jackfish and Murray’s food web is similar to that of freshwater lakes, these lakes contain very low algal biomass (measured as chlorophyll a). In fact, such low algal biomass has not been previously observed in such dilute systems. The algal community in these shallow Prairie lakes appears to be very sensitive to slight changes in climate, and future climate driven increases in salinity of prairie lakes may result in large reductions in algal primary productivity.  相似文献   

6.
Phytoplankton and zooplankton were monitored during 2 years in four eutrophic shallow lakes (two turbid and two clear water) from two wetland reserves in Belgium. In each wetland, phytoplankton biomass was significantly higher in the turbid lake than in the clear water lake. Although total macrozooplankton biomass and the contribution of daphnids to total zooplankton biomass was comparable in the clear water and the turbid lakes, the grazing pressure of macrozooplankton on phytoplankton as estimated from zooplankton to phytoplankton biomass ratios was higher in the clear water lakes. Estimated grazing by daphnids in the clear water lakes was always high in spring. In summer, however, daphnid biomass was low or daphnids were even absent during prolonged periods. During those periods phytoplankton was probably controlled by smaller macrozooplankton or by submerged macrophytes through nutrient competition, allelopathic effects or increased sedimentation rates in the macrophyte vegetation.  相似文献   

7.
The aim of the present study was to evaluate the influence of seasonality on the behavior of phytoplankton associations in eutrophic reservoirs with different depths in northeastern Brazil. Five collections were carried out at each of the reservoirs at two depths (0.1 m and near the sediment) at three-month intervals in each season (dry and rainy). The phytoplankton samples were preserved in Lugol's solution and quantified under an inverted microscope for the determination of density values, which were subsequently converted to biomass values based on cellular biovolume and classified in phytoplankton associations. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. The data were investigated using canonical correspondence analysis. The influence of seasonality on the dynamics of the phytoplankton community was lesser in the deeper reservoirs. Depth affected the behavior of the algal associations. Variation in light availability was a determinant of changes in the phytoplankton structure. Urosolenia and Anabaena associations were more abundant in shallow ecosystems with a larger eutrophic zone, whereas the Microcystis association was more related to deep ecosystems with adequate availability of nutrients. The distribution of Cyclotella, Geitlerinema, Planktothrix, Pseudanabaena and Cylindrospermopsis associations was different from that seen in subtropical regions and the substitution of these associations was related to a reduction in the eutrophic zone rather than the mixture zone.  相似文献   

8.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   

9.
In inland waters, transparent exopolymer particles (TEP) can affect carbon export and sequestration in sediments with consequences for lake C budgets. We measured TEP concentration in 32 lakes from two contrasting lake districts covering wide ranges in biological and chemical characteristics. North temperate lakes, located in a wet region, have low to moderate ionic strength and low to high dissolved organic carbon with corresponding variation in color (light absorbance). Mediterranean lakes located in a semiarid region were characterized by high ionic strength and high concentrations of dissolved organic carbon but low color. TEP concentrations were large relative to the living portion of the particulate organic carbon pool in both Mediterranean (36%) and north temperate (33%) lakes. TEP concentrations ranged from 36 to 1,462 μg [as Gum Xanthan equivalents (GX eq)] L−1 in north temperate lakes. In the Mediterranean lakes, concentrations were higher that previously reported for other systems and ranged from 66 to 9,038 μg GX eq L−1. TEP concentration was positive and significantly related to chlorophyll a (chl a) in north temperate lakes and in the entire data set. Although a significant and positive relationship between TEP and chl a was also detected in the Mediterranean lakes, bacterial abundance was most strongly related to TEP. In contrast with the positive influence of phytoplankton and bacteria on TEP, there were weaker relationships between TEP and the chemical variables tested. We observed a significant and positive relationship between pH and TEP (for all lakes) but this relationship was indirectly driven by a co-variation of pH with phytoplankton biomass based on multiple regression analysis. For the Mediterranean lakes, the negative (but not significant) trends between TEP and both conductivity and divalent cations suggest thresholds above which TEP will likely be destabilized. Under these conditions, TEP may flocculate or disperse in the water column.  相似文献   

10.
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (São Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity.  相似文献   

11.
Ecological restoration of eutrophic lakes using aquatic macrophytes is an important and practical technology. Here, we investigated the response of phytoplankton and zooplankton to a large-scale 2015-built aquatic macrophyte enclosure (AME, 200,000 m2) screened of by a PVC net in Baima Lake, a eutrophic lake, from spring to autumn of 2019. AME significantly improved water quality by increasing water transparency, and reducing total nitrogen, total phosphorus, and chlorophyll-a content during the growing season. AME significantly decreased phytoplankton abundance and biomass and marginally increased zooplankton abundance and biomass. Phytoplankton and zooplankton communities were closely related to environmental factors, such as water temperature, conductivity, total phosphorus, chemical oxygen demand, and chlorophyll-a inside and outside the AME. The zooplankton:phytoplankton biomass ratio inside was slightly higher than outside the AME. Zooplankton and phytoplankton biomass were significantly positively correlated inside and outside the AME, as were chlorophyll-a and total phosphorus. We found phosphorus to be a key factor limiting primary productivity in Baima Lake, and that bottom-up effects were the main driver to control phytoplankton in the AME. Using aquatic macrophytes to reduce nutrient loads is an effective way to manage eutrophication in Baima Lake.  相似文献   

12.
Lake Jaisamand near Udaipur (Rajasthan) is one of the oldest man-made lakes in India. The primary productivity of the lake showed a bimodal pattern with a first peak of a higher magnitude in July (7.605 g/m2d C) and the second of a lower magnitude (5.851 g/m2 dC) in December. The minimum production was 2.455 g/m2 dC in November. The chlorophyll values were high during low water levels of summer and low during monsoon months when the water level rises, thereby dispersing the phytoplankton biomass and decreasing its density per unit of water volume. From the results obtained it appears that beside temperature and transparency, the trophogenic area and seasonal water level fluctuations have a considerable influence on the primary productivity in this lake. Based on annual production rates and chlorophyll values lake Jaisamand could be regarded as an eutrophic waterbody.  相似文献   

13.
This study aims at investigating the composition and biomass of the phytoplankton community in 15 urban shallow eutrophic lakes as well as the effects of main environmental factors, including nutrient concentrations and the ratio of nitrogen to phosphorus, temperature, COD, BOD, water depth, etc. on the phytoplankton community structure. Lake water samples were taken and analyzed on a bimonthly basis during the period from March 2004 to March 2006. The redundancy analysis (RDA) and regression analysis (RA) were performed to identify the effects of nutrients on the phytoplankton community and biomass in these typical urban lakes. The results indicate that most of these urban lakes were hypertrophic due to high concentrations of total phosphorus (TP) and total nitrogen (TN), with mean levels of 490 and 5380 mg m−3, respectively. The phytoplankton community was dominated by Microcystis aeruginosa and Euglena caudate in summer and Cryptomonas ovata and Cyclotella meneghiniana in winter. The mean biomass of the phytoplankton reached 456.87 mg L−1 in summer months and the annual level was 189.24 mg L−1. Temperature and TP content were found to be the principal limiting factors for phytoplankton growth on an annual basis. On the other hand, the results of RDA and RA demonstrate that the dominant phytoplankton species were not nutrient-limited during summer months. Low TN:TP ratios (<10) were detected accompanied with fewer occurrences of N-fixing cyanobacteria and other filamentous algae in most lakes in summer, which implies that low N:P ratio does not always shifts the dominance of phytoplankton community to the N-fixing cyanobacteria. Moreover, TP always had higher correlation with chlorophyll a (Chl-a) than TN, even when the TN:TP ratios of most samples were lower than 10. Therefore, it is concluded that the TN:TP ratio is not always a suitable index to determine whether nitrogen or phosphorus limits the phytoplankton biomass in urban shallow eutrophic lakes.  相似文献   

14.
The composition of phytoplankton assemblages were studied in three sections across the continental shelf between the Río de la Plata and the oceanic waters of the Subtropical Convergence, during late spring. Algal communities were examined using microscopy and HPLC-derived pigment concentrations. The CHEMTAX program was used to estimate the chlorophyll a (chl a) biomass of different algal classes. Trends in pigment ratios due to phytoplankton photo-adaptation and photo-acclimation were also examined. In order to accommodate the natural diversity of phytoplankton assemblages the original data have been split to represent five ecosystems. In addition, the pigment data for the Brazil Current ecosystem has been split by sample depth.  相似文献   

15.
This study investigated two mining lakes located in the north of Lower Austria. These lakes arose 45 years ago when open cast lignite mining ceased. The lakes are separated by a 7-m wide dam. Due to the oxidation of pyrite, both lakes have been acidified and exhibit iron, sulphate, and heavy metal concentrations several orders of magnitude higher than in circumneutral lakes. The water column of both lakes is divided into two layers by a pronounced chemocline. The smaller mining lake (AML), with pH close to of 2.6, is the most acidic lake in Austria, whereas flooding with stream water and by drainage from the surrounding fields neutralized the adjacent larger pit lake. The goal of our study was to investigate the effect of flooding on its physical, chemical and biological properties, in comparison to the pristine AML. Even relative to other extremely acidic lakes, the flora and fauna in the AML was reduced and composed of only two flagellate, one ciliate, and one rotifer species. The simplified pelagic food web in the mixolimnion consisted of heterotrophic bacteria, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp., and the rotifer Cephalodella sp. The latter two are as yet undescribed new species. The heliozoan Actinophrys sp. that may act as top predator occurred only in low abundance. The euglenid Lepocinclis buetschlii formed a stable deep chlorophyll maximum (DCM) at 7 m depth. Highest cell numbers of L. buetschlii in the DCM exceeded 108 L?1. The neutralized mining lake harboured higher plankton diversity similar to that of natural circumneutral lakes. A peak of at least 16 different phytoplankton taxa was observed during summer. The zooplankton consisted of several copepod species, daphnids and other cladocerans, and at least six different rotifer species. Several fish species occurred in the neutralized lake. Although the effect of non-permanent flooding was largely sustainable, interannual fluctuations of the pH affected the plankton community and reduced its species diversity.  相似文献   

16.
热带浅水湖泊后生浮游动物群落以轮虫和小型枝角类为主,往往缺乏大型浮游动物,其影响因子还存在争议,因此通过减少鱼类,提高大型后生浮游动物密度,从而增强对浮游植物的下行控制、修复热带富营养化湖泊的方法受到质疑.暨大南湖位于广州暨南大学校园内,是热带富营养化浅水湖泊,于2014年1—2月实施以鱼类去除和水生植被重建为主的生态系统修复工程,以期改善水质.通过对南湖修复前后水质、后生浮游动物以及修复后鱼类群落的调查分析,研究了后生浮游动物群落对修复的响应.结果表明:与修复前相比,总氮、总磷和叶绿素a浓度显著降低,透明度显著上升.枝角类丰度和生物量显著增加,修复后初期出现较高密度的大型枝角类蚤状溞(Daphnia pulex),桡足类丰度和生物量没有显著变化,轮虫丰度下降而生物量上升;后生浮游动物体长和生物多样性显著增加.随着鱼类密度的增加,蚤状溞丰度快速降低,后期鱼类减少后蚤状溞丰度又有所升高.因此,本研究显示鱼类是控制热带浅水湖泊大型浮游动物种群的主要因素,由于控制鱼类密度以维持较高大型浮游动物密度较为困难,因此单纯生物操纵在热带浅水湖泊修复中难以取得显著效果.  相似文献   

17.
Trophic cascade hypotheses predict that fish will affect the structure and biomass of pelagic plankton communities. In order to investigate trophic cascade effects from fish down to phytoplankton, whole-lake studies were performed in five hypertrophic (mean total phosphorus (TP) concentrations higher than 1000 mg m−3) shallow lakes located in the Pampa Plain. The main climatic characteristic of this region is the alternation between periods of drought and flood, with corresponding changes of lake depth and conductivity of lake water. All lakes were studied from April to December 2000. Samples were taken of their physical and chemical characteristics and biotic communities, focusing on the zooplankton community. Fish were manipulated in four lakes (Capurro, Longinotti, Vedia 1, Vedia 2), while the fifth (Lake Vedia 3) was left undisturbed as a reference system. High abundance of planktivorous minnows (Jenynsia multidentata and Cheirodon interruptus) dominated the fish community in the reference lake. In the manipulated lakes, fish stocks were largely reduced in late autumn (May). During winter, Capurro, Longinotti and Vedia 1 were stocked with a visual planktivore, the pampean silverside (Odontesthes bonariensis, Atherinidae). Fish stocking was 24, 33 and 19 kg ha−1, respectively. In contrast, no fish were stocked in Lake Vedia 2. Following fish removal, large Daphnia appeared in these lakes and grazed intensively on the phytoplankton. In contrast, no Daphnia were found in the reference lake (Vedia 3). The stocking of O. bonariensis in lakes Capurro, Longinotti and Vedia 1 led to a decrease in the percentage of large cladocerans and a rise in the phytoplankton biomass:TP ratio. Moreover, the lakes mentioned were stocked with different quantities of silversides over different periods of time. These differences were reflected temporarily in the plankton dynamics, affecting mainly larger sized zooplankton. Nevertheless, the presence of Daphnia was short lived in the lake where fish had been removed and no O. bonariensis were stocked. Competition for resources and recruitment of remaining fish probably caused a collapse in the zooplankton biomass. Our results support the idea that fish predation on zooplankton and its effect on phytoplankton is very intense in small pampean lakes. Fish removal was short lived, however. This could be because in small pampean lakes fish recolonization is favored, and minnows are highly prolific. Moreover, if manipulation of the trophic structure of lakes is undertaken in the pampean region, high nutrient loading from the watershed, climate and hydrology should also be taken into account.  相似文献   

18.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

19.
A comparative limnological study was carried out to present a snapshot of crustacean zooplankton communities and their relations to environmental factors to test whether there is a consistent relationship between crustacean biomass and trophic indicators among lake groups with similar trophic conditions. The study lakes showed a wide range of trophic status, with total phosphorus (TP) ranging from 0.008 to 1.448 mg L−1, and chlorophyll a from 0.7 to 146.1 μg L−1, respectively. About 38 species of Crustacea were found, of which Cladocera were represented by 25 taxa (20 genera), and Copepoda by 13 taxa (11 genera). The most common and dominant species were Bosmina coregoni, Moina micrura, Diaphanosoma brachyurum, Cyclops vicinus, Thermocyclops taihokuensis, Mesocyclops notius and Sinocalanus dorrii. Daphnia was rare in abundance. Canonical correspondence analysis showed that except for four species (D. hyalina, S. dorrii, C. vicinus and M. micrura), almost all the dominant species had the same preference for environmental factors. Temperature, predatory cyclopoids and planktivorous fishes seem to be the key factors determining species distribution. TP was a relatively better trophic indicator than chlorophyll a to predict crustacean biomass. Within the three groups of lakes, however, there was no consistent relationship between crustacean biomass and trophic indicators. The possible reason might be that top-down and bottom-up control on crustaceans vary with lake trophic state. The lack of significant negative correlation between crustacean biomass and chlorophyll a suggests that there was little control of phytoplankton biomass by macrozooplankton in these shallow subtropical lakes.  相似文献   

20.
During the warm seasons of 1998–2004, the naturally-acidic (pH2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium–nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号