首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (São Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity.  相似文献   

2.
于2014年1月(枯水期)、7月(丰水期)对鄱阳湖湖水进行采集,测定相应的理化参数、叶绿素a浓度和光合有效辐射,结合初级生产力垂向归纳模型估算浮游植物初级生产力,分析湖区初级生产力特征及与环境因子的相关性.结果表明,鄱阳湖枯水期浮游植物初级生产力波动范围为83.50~355.43 mg C/(m~3·d),平均值为193.33 mg C/(m~3·d),初级生产力空间分布特征主要受水体类型的影响,枯水期初级生产力与氮、磷营养盐浓度呈负相关,其中与铵态氮浓度呈显著负相关,枯水期不会出现营养盐限制现象;丰水期浮游植物初级生产力波动范围为113.80~1134.06 mg C/(m~3·d),平均值为412.12 mg C/(m~3·d),初级生产力空间分布主要受河流注入的影响,丰水期浮游植物初级生产力与总磷及悬浮物浓度呈显著正相关,由于悬浮物对浮游植物生长的促进作用大于抑制作用,鄱阳湖丰水期会出现磷营养盐的限制;鄱阳湖整体平均流速约为0.28 m/s,易于浮游植物的生长,南鄱阳湖平均流速约为0.21 m/s,而北鄱阳湖平均流速约为0.35 m/s,所以南鄱阳湖比北鄱阳湖更容易发生水体富营养化并暴发水华.  相似文献   

3.
Large, shallow‐water lakes located on floodplains play an important role in creating highly productive ecosystems and are prone to high concentrations of suspended solids due to sediment resuspension. In this study, the aim was to determine the dominant processes governing the total suspended solid (TSS) concentration at the water surface in Tonle Sap Lake, Cambodia, which is a large, shallow‐water lake. Satellite remotely sensed daily reflectance data from 2003 to 2017 were used. Seasonal changes in TSS concentration indicated that bottom sediment resuspension during dry seasons was mostly caused by wind and the TSS concentration was closely correlated with the water depth of the lake. The TSS concentration during flood periods was controlled by both wind and inflow currents from the Tonle Sap River. Additionally, we confirmed that surface/subsurface flow with a low TSS concentration from forests on the floodplain lowered the TSS concentration year round, except during August and September. This fact implied that the floodplain forest area decrease may increase the lake TSS concentration. An analysis of the long‐term changes in TSS indicated that a decrease in the water level during flood periods resulted in the high TSS concentrations observed during the subsequent dry periods. Therefore, climate change and water resource development, which are likely to cause water level reductions in the Mekong River during flood periods, may increase the TSS concentration in Tonle Sap Lake, particularly during the dry season.  相似文献   

4.
Following a general representation of the regression analysis, especially concerning the relations between flow and concentrations of matter and loads, these relations are represented and discussed for the suspended solids, nitrate concentration, chloride content and oxygen concentration for seven sections of the Spree river. There result clear connections to the structure and utilizations of all of the parts of the river basin. Finally, the covering of the total river basin by models of water quality management in the form of regression, self-purification and eutrophication models-and their coupling is represented.  相似文献   

5.
In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and wet seasons.  相似文献   

6.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

7.
The benthic invertebrate assemblages and functional feeding groups in different mesohabitats of the Middle Paraná River–floodplain system were analyzed. Benthic invertebrates and bottom sediments were sampled in a secondary channel (center and bank mesohabitats), a temporal marginal fluvial wetland adjacent to the river, an isolated lake and a connected lake during low water level. Cluster analysis of average invertebrate densities based on the Bray Curtis dissimilarity index yielded a group composed by the mesohabitats with higher species richness, the floodplain lakes, banks mesohabitats and the wetland. The center mesohabitat of the main channel characterized by sandy sediments with low organic matter content and the lowest invertebrate densities and species richness was classified separately. Alpha diversity increased from the center mesohabitat (6 taxa) to the adjacent wetland (71 taxa), and were similar between the floodplain lakes (24 and 22 taxa) and the river bank mesohabitat (24 taxa). Gamma and beta diversities (Whittaker index) were 92 and 2.19, respectively. The highest turnover of taxa was between the river and the other mesohabitats and the lowest between floodplain lakes. Detrended correspondence analysis (DCA) showed a clear separation of wetland and banks from other mesohabitats (axis 1 and 2 explained 52.25% variance) explained by shredders and collector-filterers. The other mesohabitats were arranged in a gradient from the main channel mostly related to collector-gatherers to the connected lake and the isolated lake that were mostly characterized by predators and scrapers. The invertebrate assemblage complexity and functional feeding groups composition increased in the lateral dimension, from the center of the main channel to the temporal marginal fluvial wetland due to the influences of the spatial heterogeneity caused by different sources of organic matter inputs.  相似文献   

8.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
三十年来长江中下游湖泊富营养化状况变迁及其影响因素   总被引:9,自引:5,他引:4  
为弄清长江中下游通江/历史通江湖泊富营养化现状、成因及修复策略,对该区域27个大型湖泊和水库开展了4个季度的水质调查,并结合部分湖泊1988-1992年及2008年两个时段富营养化调查成果,分析近30年来长江中下游地区大型湖泊富营养化关键指标变化的特征及其驱动因素.结果表明,目前该区域绝大多数湖泊处于富营养水平,较1980s有明显加重,浮游植物叶绿素a及总磷是最主要的营养状态指数贡献因子;湖泊的富营养化状况与湖泊的江湖连通状况、换水周期等流动性状况、渔业养殖及管理、流域纳污、治理强度等人类活动方式和强度密切相关;与历史调查结果相比,氮、磷的增幅相对较小,而有机质污染程度明显加重、浮游植物叶绿素a浓度大幅增高,表明营养盐之外的其他因素,如水文节律的变化、江湖阻隔、不合理的渔业养殖活动等,对该区域湖泊的富营养化问题加剧、浮游植物生产力增高起到更为重要的作用.因此,从治理途径和策略上来看,增加湖泊的流通性、恢复部分湖泊的自然水文波动节律、优化湖泊渔业管理、提升湖泊流域营养盐的有效截留能力、实施湖泊生态修复工程是控制长江中下游湖泊富营养化、提升区域湖泊生态质量的关键.  相似文献   

10.
During the high water season, the flooding reduces environmental heterogeneity in aquatic ecosystems of the Pantanal wetland. When the water level recedes, lakes and channels are formed as individual systems. Therefore, we expected the spatial heterogeneity during the low water phase resulting in changes on biological communities leading to high phytoplankton abundance, biomass and diversity within and between habitats. To test this hypothesis, we analyzed eight freshwater systems (five oxbow lakes, two channels, and the river) during the low water period. Phytoplankton biomass, abundance, diversity (alpha, beta, gamma) and diversity metrics as richness (species per sample), Shannon diversity (H′) and evenness were measured in all systems along with nutrient concentrations, zooplankton and bacteria abundances. We found 97 species as gamma diversity. The alpha diversity was unexpectedly low in comparison to most other South American floodplain systems (38 species in river, 24 in channels and 29 in lakes). Also, the systems are relatively similar in composition (beta diversity, 28%). Connectivity differences between systems highlighted differences in phytoplankton abundance and biomass (fresh weight) ranging from 1428 ind mL−1 (river) to 3710 ind mL−1 (lakes) and from 0.71 mg L−1 (river) to 2.9 mg L−1 (lakes), respectively. However, our results did not indicate significant differences in phytoplankton species richness between the systems during the low water. Our main conclusions are that local factors may be responsible for changes on phytoplankton community and the time of isolation during the low water phase was not sufficient to promote changes in phytoplankton diversity between the habitats.  相似文献   

11.
Determining the extent of flooding is an important role of the hydrological research community and provides a vital service to planners and engineers. For large river systems located within distant settings it is practical to utilize a remote sensing approach. This study combines a remote sensing and geomorphic approach to delineate the extent of a large hurricane generated flood event in the lower Pánuco basin (98,227 km2), the seventh largest river system draining into the Gulf of Mexico. The lower Pánuco basin is located within the coastal plain of eastern Mexico and has a complex alluvial valley. Data sources included a Landsat 5TM and Landsat 7ETM+ scene, and topographic and particle size data from fieldwork and laboratory analysis. The Landsat 5TM image was acquired after the peak of a large flood event in 1993, whereas the Landsat 7ETM+ scene was acquired during the dry season in 2000. The increasing number of days between flood crest and the date of flood image acquisition along the river valley provided the opportunity to examine several methods of flood delineation and to consider differences in floodplain geomorphology. Backswamp environments were easily delineated in flooded reaches within the Panuco and Tamuin valleys, whereas in the Moctezuma valley more sophisticated methods were required because of the greater time between image acquisition and flood peak, and the complex floodplain topography. This included Principal Component (PC) analysis and image classification. Within the floodplain, residual Holocene terraces complicated flood mapping. Classification of both images allowed consideration of the influence of permanent standing water. Although the flooded areas were greater in the lower reaches of the study area, because this portion of the valley contained large floodplain lakes, the amount of inundation was actually lower. Remote sensing offers the ability to examine large alluvial valleys in distant settings but does not imply that geomorphic criteria should be excluded. Indeed, because of heterogeneous floodplain topography this study illustrates the importance of including field based geomorphic analysis so that the complexity of distinct floodplain environments are considered. The findings from this study are significant because most remote sensing data obtained for the purpose of flood mapping will not coincide with the flood crest. Thus, this study provides an appropriate method for mapping flood inundation in large and complex floodplain settings after flood crest recession.  相似文献   

12.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The expanding culture of fish in coastal areas has raised issues concerning resource use conflicts and water quality problems. A major concern is pollution resulting from nitrogen and phosphorus lost to the environment from feed wastage and fish excretion. The purpose of the study was to assess the environmental conditions in a river system affected by fishponds. Nutrient fluxes and productivity measurements were obtained from Sta. Rita River, a river estuary used as a discharge and an irrigation area of approximately 316 ha of fishponds. During the dry season, when freshwater influence is absent, salinity values inside the river were higher than outside (in the bay). Nutrient trends during ebb and flood periods were similar except for some lag in the profiles that indicate tidal oscillation. The absence of river flow during the dry period resulted in a negligible flux of nutrients along the river. During the wet season, the increase in nitrate concentrations indicates river inputs while the decrease in phosphate values imply less of freshwater influence but more from ponds and domestic wastes. Similarity in productivity estimates signifies good agreement between direct and indirect methods. The absence of flushing during the dry season translates to trapping of nutrients discharged from the ponds in the drainage canals.  相似文献   

14.
洪泛系统具有复杂动态的水文环境,在季节性洪水脉冲影响下,地表-地下水交互转化对洪泛区水循环和生态环境保护等方面具有重要意义.本文采用野外试验、统计分析和达西定律等研究方法,开展了鄱阳湖洪泛区碟形湖湿地系统(河流-洲滩湿地-碟形湖)地表-地下水文学特征、相互作用和交换通量研究.数据资料显示,在地形地貌影响下,研究区洲滩地下水位明显低于碟形湖水位,但总体上略高于周边河流水位,统计结果进一步表明,在控制洪泛湿地的地下水动态方面,河流水文情势变化对地下水的影响作用要强于碟形湖水文变化.就河流-地下水转化关系而言,研究区湿地系统的地下水与周边河流水体之间存在动态转化关系,地下水对河流的补给通量以及河流对地下水的补给通量分别约为0.4和0.2 m/d.就湖泊-地下水转化关系而言,碟形湖一般来说补给周边滩地的地下水系统,但两者之间的交换通量基本小于0.1 m/d.在年尺度上,研究区地表-地下水之间的累积交换通量变化约介于7.5~48.2 m/a,其中河流-地下水的累积交换通量约是碟形湖-地下水的4~7倍,且秋、冬季的累积交换通量要明显大于春、夏季.本文研究结果可为洪泛区河湖系统的水资源联合管理、水环境整治和生态环境保护等方面提供科学支撑.  相似文献   

15.
16.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large‐scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long‐term fate of contaminated sediment within the river catchment. Knowledge of the inter‐ and intra‐annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining‐related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those events affect a given catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Aquatic macrophytes produce large amounts of organic matter and have an essential structuring role in floodplains. This process highlights the importance of this community to aquatic biodiversity maintenance. We investigated the role of a flood disturbance on the response of macrophyte assemblages in regional and local structuring in the Upper Paraná River floodplain. Plant species were recorded before (November 2006) and after (March 2007) an uncommon increase in water level caused by the El Niño South Oscillation, which is considered a disturbance. Samples were taken in lakes and backwaters located in the floodplain and connected to three distinct rivers (that differentiate three sub-systems). Species richness and the assemblage structure of macrophyte patches underwent significant changes after the flood disturbance, depending on the specific sub-system (rivers) to which the lakes were connected. In addition, flood disturbance had a strong impact on community organization at the local scale. However, regionalization with respect to sub-systems remained significant after the flood disturbance. Our results emphasize the importance of connection to the river on macrophyte community composition and richness, and suggest that flood events in the Upper Paraná River floodplain disrupt community organization only at fine (local) scales.  相似文献   

20.
滤水速率的快慢是决定滤食性河蚌对水质改善与否的关键,但受蚌龄大小、食物多少和季节变化的影响.以背角无齿蚌(Anodonta woodiana)为研究对象,设置幼龄蚌组、成年蚌组和无蚌对照组,在惠州西湖生态修复后的清水态和未修复的富营养化水体同时进行中型系统原位实验,测定了各处理组水层中氮、磷、总悬浮物(TSS)浓度和浮游藻类生物量(用叶绿素a(Chl.a)浓度表示)的季节变化,以研究蚌龄、食物和季节变化对背角无齿蚌水质改善的影响.结果表明,与对照组相比,背角无齿蚌提高了清水态水体总磷(TP)和铵态氮浓度,但对总氮(TN)、TSS和浮游藻类Chl.a浓度的影响不显著,表明其不能有效改善清水态水体水质;富营养化水体中,背角无齿蚌虽对水中TN浓度影响不显著,但显著降低了TP浓度、浮游藻类Chl.a浓度和TSS浓度;表明背角无齿蚌可改善富营养化水体水质;且富营养化水体中幼龄蚌的滤水速率显著高于成年蚌;幼龄蚌的滤水速率春季最大(0.132±0.018 L/(g·h)),夏季最小.因此,在富营养化水体修复前期,可通过放养本地滤食性河蚌,如背角无齿蚌,以改善水质,春季放养幼龄蚌更佳,为接下来的修复创造有利条件;而在生态修复后期的清水态水体中,单独的河蚌对水质改善效果不明显.本研究可为水生态系统保护和富营养化水体生态修复提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号