首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We present a geotechnical stability analysis for the planar failure of riverbanks, which incorporates the effects of root reinforcement and surcharge for mature stands of woody riparian vegetation. The analysis relies on a new method of representing the root distribution in the soil, which evaluates the effects of the vegetation's position on the bank. The model is used in a series of sensitivity analyses performed for a wide range of bank morphological (bank slope and height) and sedimentological (bank cohesion and friction angle) conditions, enabling discrimination of the types of bank environment for which vegetation has an effect on bank stability. The results indicate that woody vegetation elements have a maximal impact on bank stability when they are located at the ends of the incipient failure plane (i.e. at the bank toe or at the intersection of the failure plane with the floodplain) and that vegetation has a greater effect on net bank stability when it is growing on low, shallow, banks comprised of weakly cohesive sediments. However, the magnitude of these effects is limited, with vegetation typically inducing changes (relative to non‐vegetated banks) in simulated factors of safety of less than 5%. If correct, this suggests that the well documented effects of vegetation on channel morphology must be related to alternative process mechanisms (such as the interaction of vegetation with river flows) rather than the mechanical effects of vegetation on bank failure, except in special cases where the equivalent non‐vegetated bank has a highly marginal stability status. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The general role of river water input in shaping the basic morphometric parameters of floodplain lakes has been previously investigated. However, the process has not been quantitatively described in detail. This study is the first attempt in the literature to determine the allometric relation between fluvial impulse, expressed as Fluvial Connectivity Quotient, and morphometric parameters of six floodplain lakes of Bug River valley in the period 1952–2014. This relationship is given by Y = aXb, from which the value of b exponent was analysed to determine the strength of the allometric relation. Extreme values of allometric compounds during the time period under study ranged from 5.99 to ?4.91. Volume was the morphometric parameter showing the highest variability in all the lakes. General similarity in allometric relations was observed in the lakes under study. During analysis, no long‐term trends were observed in the relationship between the Fluvial Connectivity Quotient and morphometric parameters. The results obtained show that fluvial impulse was the factor determining the variability of morphometric parameters of the lakes. Direct catchments topography of lake has periodically (during limnophase periods) played a significant role in shaping the morphometry of floodplain lakes. The most stable allometric relations occurred in a confluent lake, with a low limnological effective rise value and consequently, relatively long potamophase periods.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The purpose of this study was to examine the historical change in sedimentation rates in lakes that have been impacted by river regulation and agricultural activities in the Ishikari River floodplain. We dated sediment cores using caesium‐137 (137Cs) dating and tephrochronology, and we estimated sediment sources from 137Cs concentrations in the topsoil of representative land covers. We found that, between 1739 and 1963, the distance between the lake and the main river channel and whether or not the lake was connected to the river affected the sedimentation rates. After 1963, agricultural drainage systems were established in the Ishikari River floodplain. The average sedimentation rate before and after the construction of drainage ditches varied between 1–66 and 87–301 mg cm–2 a–1, respectively. The increase in the sedimentation rate after 1963 was caused by the construction of a number of drainage networks, as well as extensive cultivation activity and/or fragmentation of the swamp buffers surrounding the lakes. The 137Cs activities at the surfaces of the lake as well as the catchment‐derived 137Cs contributions and 137Cs inventory in the lake profiles were used to examine the sediment influx from the various drainage areas after the establishment of the drainage system. Our results indicate that the majority of the lake sediments were derived from cultivated areas, and therefore the catchment‐derived 137Cs contribution in the lakes was strongly correlated with the sedimentation rate. The 137Cs inventory across all of the lake profiles was also significantly greater than the atmospheric fallout. We identified a negative correlation between the 137Cs lake profile inventory and the sedimentation rate. This is because the sediment originating from the drainage areas contained low 137Cs concentrations, which diluted the overall concentration of 137Cs in the lake sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
长江中下游安庆沿江湖泊湿地夏季鸟类多样性调查   总被引:3,自引:3,他引:0  
湖泊湿地是鸟类的重要栖息地,湖泊湿地鸟类是湖泊生态系统重要的监测生物,湖泊湿地鸟类多样性及其影响因素的研究对湿地管理具有重要意义.2011年7-8月,采用样线法对长江中下游安庆沿江7个湖泊湿地的夏季鸟类资源进行了调查,以期为湖泊湿地资源管理提供依据.共记录到安庆沿江湖泊湿地鸟类14目35科82种,其中留鸟27种(占32.9%),夏候鸟37种(占45.1%);水鸟28种(占34.6%);肉食性、食虫和杂食性鸟类占多数,分别占30.5%、30.5%和23.2%;须浮鸥、夜鹭、丝光椋鸟、黑脸噪鹛、树麻雀、家燕等6种鸟类为优势种.物种数以黄大湖最高(50种),白荡湖和破罡湖最低(各28种);Shannon-Wiener指数以黄大湖最高(2.123),白荡湖最低(1.918);均匀度指数以龙感湖最高(0.865),菜子湖最低(0.739).进一步分析显示,鸟类物种数、多样性指数与湖泊面积呈显著正相关,鸟类物种数、多样性指数与干扰强度呈显著负相关.采取退田还湖、恢复湿地等途径增加湿地面积、生境类型和植被资源对于保护湖泊湿地的鸟类资源具有积极意义.  相似文献   

7.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
长江武汉城区段呈SSW-NNE向从城市中心流过.两岸滨江平原是武汉城市的黄金地段.分布于汉阳和武昌沿岸的滨江平原,平面形状似弓形分布于晚更新世岗地与长江之间.研究发现,其形成经历了江-洲-湖-陆的转变过程,是长江中的沙洲并岸的产物.本文以武昌北滨江平原为例,对其形成过程进行了解析.长江武汉蛇山-青山段在明代江面十分开阔...  相似文献   

9.
This study focuses on the assessment of relationships between flow and macrozoobenthos structure that was performed in a reconnected oxbow lake located in the S?upia River floodplain (northern Poland). The lake was created during river straightening at the beginning of 20th century by cutting off the right‐bank meander. The oxbow restoration was performed to enhance the ecological viability of this water body and restore riverine wetland. In July 2000 the oxbow was connected with the river channel through PVC pipes which enabled free water movement. Macrozoobenthos sampling, as well as chemical analyses of water and hydrological measurements, took place both before and after the oxbow reconnection. Before the oxbow reconnection, the dominant species was Asellus aquaticus, whereas after the reconnection the structure of benthic species changed significantly. During the first year it was replaced by bivalves and Chironomidae larvae and then A. aquaticus. After the reconnection, macrozoobenthos mean density was 5‐fold higher and the mean wet biomass was 77‐fold higher than before the reconnection. The number of taxa increased from 4 before the oxbow reconnection to 17 during the first year after the performed works and 20 in the next year. We stated that the revitalization process of the reconnected oxbow lake has long‐term consequences for the benthic communities. The most significant feature of the oxbow reconnection is the qualitative and quantitative recolonization by riverine macrozoobenthos species. The performed restoration significantly improved ecological status of the oxbow lake by the increase in biodiversity and water quality.  相似文献   

10.
Burrowing into riverbanks by animals transfers sediment directly into river channels and has been hypothesised to accelerate bank erosion and promote mass failure. A field monitoring study on two UK rivers invaded by signal crayfish (Pacifastacus leniusculus) assessed the impact of burrowing on bank erosion processes. Erosion pins were installed in 17 riverbanks across a gradient of crayfish burrow densities and monitored for 22 months. Bank retreat increased significantly with crayfish burrow density. At the bank scale (<6 m river length), high crayfish burrow densities were associated with accelerated bank retreat of up to 253% and more than a doubling of the area of bank collapse compared with banks without burrows. Direct sediment supply by burrowing activity contributed 0.2% and 0.6% of total sediment at the reach (1.1 km) and local bank (<6 m) scales. However, accelerated bank retreat caused by burrows contributed 12.2% and 29.8% of the total sediment supply at the reach and bank scales. Together, burrowing and the associated acceleration of retreat and collapse supplied an additional 25.4 t km−1 a−1 of floodplain sediments at one site, demonstrating the substantial impact that signal crayfish can have on fine sediment supply. For the first time, an empirical relation linking animal burrow characteristics to riverbank retreat is presented. The study adds to a small number of sediment budget studies that compare sediment fluxes driven by biotic and abiotic energy but is unique in isolating and measuring the substantial interactive effect of the acceleration of abiotic bank erosion facilitated by biotic activity. Biotic energy expended through burrowing represents an energy surcharge to the river system that can augment sediment erosion by geophysical mechanisms.  相似文献   

11.
There is growing concern that rapidly changing climate in high latitudes may generate significant geomorphological changes that could mobilise floodplain sediments and carbon; however detailed investigations into the bank erosion process regimes of high latitude rivers remain lacking. Here we employ a combination of thermal and RGB colour time-lapse photos in concert with water level, flow characteristics, bank sediment moisture and temperature, and topographical data to analyse river bank dynamics during the open-channel flow period (the period from the rise of the spring snowmelt flood until the autumn low flow period) for a subarctic river in northern Finland (Pulmanki River). We show how variations of bank sediment temperature and moisture affect bank erosion rates and locations, how bank collapses relate to fluvial processes, and elucidate the seasonal variations and interlinkages between the different driving processes. We find that areas with high levels of groundwater content and loose sand layers were the most prone areas for bank erosion. Groundwater seeping caused continuous erosion throughout the study period, whereas erosion by flowing river water occurred during the peak of snowmelt flood. However, erosion also occurred during the falling phase of the spring flood, mainly due to mass failures. The rising phase of the spring flood therefore did not affect the river bank as much as its peak or receding phases. This is explained because the bank is resistant to erosion due to the prevalence of still frozen and drier sediments at the beginning of the spring flood. Overall, most bank erosion and deposition occurrences were observed during the low flow period after the spring flood. This highlights that spring melt, while often delivering the highest discharges, may not be the main driver of bank erosion in sub-arctic meandering rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
洞庭湖洲滩土壤种子库对土壤水分变化的响应   总被引:1,自引:1,他引:0  
陈明珠  靳朝  雷光春  阳俭  雷霆 《湖泊科学》2020,32(3):745-753
由于三峡大坝及上游水库群的运行,长江中下游水域水文节律随之发生了改变,导致洞庭湖枯水期提前,进而影响洞庭湖洲滩植被及其土壤种子库的分布格局.本研究在洞庭湖4个自然保护区内选取共11个典型洲滩湿地,沿由水到陆方向根据植被类型将洲滩分为泥沙洲滩、泥沙—湖草洲滩过渡带、湖草洲滩、湖草—南荻洲滩过渡带、南荻洲滩5种洲滩类型.通过样带—样方法调查和采样,并结合湿润和水淹两种条件下的土壤种子库萌发实验,分析了土壤水分变化对洲滩种子库萌发特征的影响及土壤种子库与地表植被的关系.结果显示:①土壤含水量沿水到陆方向由泥沙洲滩向南荻洲滩递减;②不同类型洲滩土壤种子库密度没有显著差异;③温室萌发实验中,水淹条件下土壤种子库物种丰富度和种子库密度显著降低,东洞庭湖自然保护区土壤种子库物种丰富度和种子库密度较高;④地表植被物种丰富度高于土壤种子库,泥沙洲滩土壤种子库与地表植被物种组成的Jaccard相似性指数最低.此外,虉草(Phalaris arundinacea)、芦苇(Phragmites communis)、南荻(Miscanthus sacchariflorus)等只在地表植被中存在,而陌上菜(Lindernia procumbens)、通泉草(Mazus japonicus)等只在种子库中存在.结果表明,在进行湿地植被恢复时,不能仅依靠种子库移植技术,还要考虑湖区季节性的水位变化以及个别物种的特异性,配合有针对性的水文调控机制及相关的人工措施恢复其原有植被.  相似文献   

13.
For lakes in desert hinterlands that are not recharged by river runoff, sediment input solely comes from wind transport. While the processes of sediment transport and deposition in these lakes differ significantly from those with river discharge, the spatial distribution of sediment grain size in these groundwater‐recharged lakes remains largely unknown. Moreover, whether the grain size distribution in these lake sediments can be used as a proxy in the study of past climatic change and environmental evolution studies is unclear. In this study, five lakes with a range of surface areas that had no runoff recharge were selected from the hinterland of the Badain Jaran Desert of north‐western China, and a total of 108 samples of lake surface sediments were collected to examine the spatial distribution of grain size. Moreover, an end‐member‐modeling algorithm was used to calculate end members from all grain size measurements. Our results showed that both the median and mean grain sizes in the lake sediments decreased from the nearshore to the offshore, deep‐water zone. However, the lowest median and mean grain sizes were not found in the center of the lakes, in contrast to lakes recharged by surface runoff. The median grain size of sediment in the lake center was negatively correlated with lake level, and thus could help reveal lake evolution at low resolutions. Moreover, EM1 and EM2 were interpreted as wind transported sediment, and sediment perturbed by lake waves after wind transport, respectively. The modal grain size of EM1 varied slightly between lakes, while changes in the modal grain size of EM2 were related to lake area. Given the positive relationship found between EM2 content and lake level, changes in the EM2 content (%) can serve as a rough indicator of lake level fluctuations at low temporal resolutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
洪泛系统具有复杂动态的水文环境,在季节性洪水脉冲影响下,地表-地下水交互转化对洪泛区水循环和生态环境保护等方面具有重要意义.本文采用野外试验、统计分析和达西定律等研究方法,开展了鄱阳湖洪泛区碟形湖湿地系统(河流-洲滩湿地-碟形湖)地表-地下水文学特征、相互作用和交换通量研究.数据资料显示,在地形地貌影响下,研究区洲滩地下水位明显低于碟形湖水位,但总体上略高于周边河流水位,统计结果进一步表明,在控制洪泛湿地的地下水动态方面,河流水文情势变化对地下水的影响作用要强于碟形湖水文变化.就河流-地下水转化关系而言,研究区湿地系统的地下水与周边河流水体之间存在动态转化关系,地下水对河流的补给通量以及河流对地下水的补给通量分别约为0.4和0.2 m/d.就湖泊-地下水转化关系而言,碟形湖一般来说补给周边滩地的地下水系统,但两者之间的交换通量基本小于0.1 m/d.在年尺度上,研究区地表-地下水之间的累积交换通量变化约介于7.5~48.2 m/a,其中河流-地下水的累积交换通量约是碟形湖-地下水的4~7倍,且秋、冬季的累积交换通量要明显大于春、夏季.本文研究结果可为洪泛区河湖系统的水资源联合管理、水环境整治和生态环境保护等方面提供科学支撑.  相似文献   

15.
The distribution of benthic invertebrates and their subfossil remains was examined within the basin of De Waay, a dimictic, eutrophic lake in the Netherlands. We focused on Chironomidae, but also report the abundances of 11 invertebrate groups that potentially produce chitinous remains that are preserved in the fossil record, although their remains could only be identified at a coarser taxonomic resolution. Most living invertebrates sampled in different seasons were constrained to the littoral zone, with the exception of a few taxa (Ceratopogonidae, Chaoborus flavicans, and Chironomus) that are adapted to low oxygen conditions in the seasonally anoxic profundal zone. In contrast, assemblages of invertebrate remains in lake surface sediments were similar in the entire lake basin, suggesting that considerable numbers of invertebrate remains are transported and redeposited off-shore in Lake De Waay, due to its steep bathymetry. These results indicate that a single sediment sample obtained from the centre of this lake contains subfossil invertebrate remains originating from the entire lake basin. In Lake De Waay, the majority of taxa found in the living assemblages were identified as remains in lake surface sediments, at least for the Chironomidae that could be identified at a similar taxonomic level in living and subfossil assemblages. Of the total 44 chironomid taxa found in Lake De Waay, 35 taxa occurred in the living assemblages and 34 taxa occurred in the subfossil assemblages. Thirty chironomid taxa occurred both as living and subfossil specimens, and on average these 30 taxa represent 94% of the specimens encountered in a sediment sample. Five rare chironomid taxa present as living larvae were not detected in the subfossil assemblages. Conversely, eight rare and four common chironomid taxa were found in subfossil remains, but not in living assemblages. Our results indicate that subfossil assemblages in surface sediment samples provide spatially integrated and representative samples of the living assemblage. However, a combined approach examining both the living benthic invertebrate fauna and invertebrate remains in lake surface sediments will potentially give a more complete and detailed overview of benthic invertebrates in a lake ecosystem than an approach based exclusively on one of these groups.  相似文献   

16.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In the first decades of the 20th century, the Ebro River was the Iberian channel with the most active fluvial dynamics and the most remarkable spatial‐temporal evolution. Its meandering typology, the dimensions of its floodplain, and the singularities of its flow regime produced an especially interesting set of river functions. The largest dynamics of the Ebro River are concentrated along the meandering profile of the central sector. During the 20th century, this sector experienced a large alteration of its geomorphological structure. We present here an analysis of this evolution through the cartographic study of a long segment of the river (~250 km) in 1927, 1956 and 2003. The results show a large reduction in bank sinuosity, a progressive loss of fluvial territory, and a large decrease in channel width. These changes are especially clear in the areas previously most ecologically connected with the active channel. The fluvial territory of the river in 2003 was approximately half that found during the first decades of the 20th century. Forest plantations, which were non‐existent in 1927, occupied more than 1500 ha of the study area in the last decade. This intense geomorphological transformation becomes ecologically visible in (i) a 35% reduction of the area occupied by riparian vegetation; (ii) a loss of the heterogeneity of riparian forest spots, which were formerly structured in an irregular mosaic far from the river thalweg; and (iii) a modification of the riparian forest structure, which is currently linear, uniform, thin and very close to the river axis. The ecomorphological alteration was intensified by the remarkable reduction in bank length (13%) and the reduced dynamism of the present river system, indicated by an increase in the percentage of fluvial territory occupied by riparian forests and a reduction in the area occupied by the active channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Benthic macro-invertebrates are vital components of river ecosystems.The effects of fluvial processes and human activities on the distribution of macro-invertebrates were studied through field investigations and experiment.Sixty-one sampling sites on 31 rivers in China were selected to investigate the structures of macro-invertebrate assemblages.The rivers,according to their fluvial conditions,are classified as streams with a stable channel bed,degrading channel bed,aggrading channel bed,and intensive bed load motion.The structures of macro-invertebrate fauna for the four types of rivers are very different.Stable rivers have a large number of individuals,abundant fauna, and high biodiversity;while the density and taxa richness for degrading rivers are small,and those for aggrading rivers are much less;whereas the ecology of rivers with intensive bed load motion are the worst.This paper proposes that streambed stability is the primary influential factor shaping the structure of benthic macro-invertebrate communities.Organic pollution can obviously result in the decrease of biodiversity,in the simplification of macro-invertebrate structures,and in the distortion of functional feeding group composition.In a river with high total nitrogen content,the relative abundance of collector-gatherers is high,and that of collector-filterers,scrapers,shredders,and predators are low.Scrapers,shredders,and predators disappear in severely polluted rivers.The isolation of aquatic habitat results in a distinct decrease of individual numbers and taxa richness.This result demonstrates that the connectivity of aquatic habitat significantly affects macro-invertebrate assemblages.A practical method to calculate a Habitat Suitability Index(HSI) is proposed,integrating the effects of the primary physical(including biotic and abiotic) and chemical factors.The biodiversity and taxa richness increase non-linearly with HSI.  相似文献   

20.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号